【題目】如圖(1),在△ABC中,AB=BC,P為AB邊上一點(diǎn),連接CP,以PA、PC為鄰邊作APCD,AC與PD相交于點(diǎn)E,已知∠ABC=∠AEP=(0°<<90°).
(1)求證: ∠EAP=∠EPA;
(2)APCD是否為矩形?請(qǐng)說(shuō)明理由;
(3)如圖(2),F為BC中點(diǎn),連接FP,將∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(點(diǎn)M、N分別是∠MEN的兩邊與BA、FP延長(zhǎng)線(xiàn)的交點(diǎn)).猜想線(xiàn)段EM與EN之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)見(jiàn)解析;
(2)APCD是矩形.,理由見(jiàn)解析;
(3)EM=EN,理由見(jiàn)解析.
【解析】
(1)根據(jù)AB=BC可證∠CAB=∠ACB,則在△ABC與△AEP中,有兩個(gè)角對(duì)應(yīng)相等,根據(jù)三角形內(nèi)角和定理,即可證得;
(2)由(1)知∠EPA=∠EAP,則AC=DP,根據(jù)對(duì)角線(xiàn)相等的平行四邊形是矩形即可求證;
(3)可以證明△EAM≌△EPN,從而得到EM=EN.
證明:(1)在△ABC和△AEP中,
∠ABC=∠AEP,∠BAC=∠EAP,
∠ACB=∠APE,
在△ABC中,AB=BC.∠ACB=∠BAC,
∠EPA=∠EAP,
(2)APCD是矩形.
四邊形APCD是平行四邊形,
AC=2EA,PD=2EP.
由(1)知, ∠EPA=∠EAP.
EA=EP,進(jìn)而AC=PD
APCD是矩形.
(3)EM=EN
EA=EP,∠EPA=90° -
∠EAM=180°-∠EAP =180°-∠EPA= 180°-(90°-)=90°+
由(2)知, ∠CPB=90°,F是BC的中點(diǎn),FP=FB,
∠FPB=∠ABC=,
∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90° -+=90°+
∠EAM=∠EPN
∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌,得?/span>∠MEN,
∠AEP-∠AEN =∠MEN-∠AEN,即∠MEA=∠NEP.
△EAM≌△EPN,
EM=EN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度 a 為 10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關(guān)系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長(zhǎng)是多少米?
(3) 當(dāng) AB 的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個(gè)交點(diǎn),則m=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過(guò)點(diǎn)B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線(xiàn)交BE的延長(zhǎng)線(xiàn)于F,且AF=CD,連接CF.
(1)求證:△AEF≌△DEB;
(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲登山上升的速度是每分鐘 米,乙在地時(shí)距地面的高度為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式.
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BD平分∠ABC,且AD⊥BD,E為AC的中點(diǎn),AD=6cm,BD=8cm,BC=16cm,則DE的長(zhǎng)為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O 的直徑為 4,AB 是⊙O 的弦,∠AOB=120°,點(diǎn) P 在⊙O 上,若點(diǎn) P到直線(xiàn) AB 的距離為 1,則∠PAB 的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,對(duì)角線(xiàn)BD所在的直線(xiàn)上有兩點(diǎn)E、F滿(mǎn)足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com