【題目】如圖,在正方形ABCD中,△AEF的頂點E,F分別在BC、CD邊上,高AG與正方形的邊長相等,連BD分別交AE、AF于點M、N,若EG=4,GF=6,BM=,則MN的長為______
【答案】
【解析】
連接GM,GN,由AG=AB=AD,利用“HL”證明△AGE≌△ABE,△AGF≌△ADF,從而有BE=EG=4,DF=FG=6,設(shè)正方形的邊長為a,在Rt△CEF中,利用勾股定理求a的值,再利用勾股定理求正方形對角線BD的長,再證明△ABM≌△AGM,△ADN≌△AGN,得出MG=BM,NG=ND,∠MGN=∠MGA+∠NGA=∠MBA+∠NDA=90°,在Rt△GMN中,利用勾股定理求MN的值.
解:如圖,連接GM,GN,
∵AG=AB,AE=AE,∴△AGE≌△ABE,
同理可證△AGF≌△ADF,
∴BE=EG=4,DF=FG=6,
設(shè)正方形的邊長為a,在Rt△CEF中,CE=a-4,CF=a-6,
由勾股定理,得CE2+CF2=EF2,即(a-4)2+(a-6)2=102,
解得a=12或-2(舍去負值),
∴BD=12,
易證△ABM≌△AGM,△ADN≌△AGN,
∴MG=BM=3,NG=ND=1-3-MN=9-MN,
∠MGN=∠MGA+∠NGA=∠MBA+∠NDA=90°,
在Rt△GMN中,由勾股定理,得MG2+NG2=MN2,
即(3)2+(9-MN)2=MN2,
解得MN=5故答案為:5.
科目:初中數(shù)學 來源: 題型:
【題目】某乒乓球館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價600元/張,每次憑卡不再收費;②銀卡售價150元/張,每次憑卡另收10元;暑期普通票正常出售,兩種優(yōu)惠卡僅限暑期使用,不限次數(shù).設(shè)打乒乓x次時,所需總費用為y元.
(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數(shù)關(guān)系式;
(2)在同一個坐標系中,若三種消費方式對應(yīng)的函數(shù)圖像如圖所示,請根據(jù)函數(shù)圖像,寫出選擇哪種消費方式更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解本校九年級學生期末數(shù)學考試情況,小亮在九年級隨機抽取了一部分學生的期末數(shù)學成績?yōu)闃颖荆譃锳(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:
(1)這次隨機抽取的學生共有多少人?
(2)請補全條形統(tǒng)計圖;
(3)這個學校九年級共有學生1200人,若分數(shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解我區(qū)初中學生課外閱讀情況,調(diào)查小組對我區(qū)這學期初中學生閱讀課外書籍的冊數(shù)進行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計圖.
根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次抽樣調(diào)查的樣本容量是 ;
(2)補全條形統(tǒng)計圖;
(3)我區(qū)共有18000名初中生,估計我區(qū)初中學生這學期課外閱讀超過2冊的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲杯中盛有m毫升紅墨水,乙杯中盛有m毫升藍墨水,從甲杯中倒出a毫升到乙杯里(0<a<m),攪勻后,又從乙杯倒出a毫升到甲杯里,則這時( )
A. 甲杯中混入的藍墨水比乙杯中混入的紅墨水少
B. 甲杯中混入的藍墨水比乙杯中混入的紅墨水多
C. 甲杯中混入的藍墨水和乙杯中混入的紅墨水相同
D. 甲杯中混入的藍墨水與乙杯中混入的紅墨水多少關(guān)系不定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為做好漢江防汛工作,防汛指揮部決定對一段長為2500m重點堤段利用沙石和土進行加固加寬.專家提供的方案是:使背水坡的坡度由原來的1:1變?yōu)?/span>1:1.5,如圖,若CD∥BA,CD=4米,鉛直高DE=8米.
(1)求加固加寬這一重點堤段需沙石和土方數(shù)是多少?
(2)某運輸隊承包這項沙石和土的運送工程,根據(jù)施工方計劃在一定時間內(nèi)完成,按計劃工作5天后,增加了設(shè)備,工效提高到原來的1.5倍,結(jié)果提前了5天完成任務(wù),問按原計劃每天需運送沙石和土多少m3?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=(k≠0)的圖象的一支交于C(1,4),E兩點,CA⊥y軸于點A,EB⊥x軸于點B,則以下結(jié)論:①k的值為4;②△BED是等腰直角三角形;③S△ACO=S△BEO;④S△CEO=15;⑤點D的坐標為(5,0).其中正確的是( )
A. ①②③B. ①②③④C. ②③④⑤D. ①②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中有兩點A(0,1),B(,0),動點P在線段AB上運動,過點P作y軸的垂線,垂足為點M,作x軸的垂線,垂足為點N,連接MN,則線段MN的最小值為( 。
A. 1B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com