【題目】如圖,在RtABC中,∠ACB90°,CD是斜邊AB上的中線,過點(diǎn)AAECD于點(diǎn)F,交CB于點(diǎn)E,且∠EAB=∠DCB

1)求∠B的度數(shù):

2)求證:BC3CE

【答案】1∠B=30°;(2)詳見解析.

【解析】

1)根據(jù)余角的性質(zhì)得到∠ECF=∠CAF,求得∠CAD2DCB,由CD是斜邊AB上的中線,得到CDBD,推出∠CAB2B,于是得到結(jié)論;

2)根據(jù)直角三角形的性質(zhì)即可得到結(jié)論.

解:(1)∵AECD,

∴∠AFC=∠ACB90°,

∴∠CAF+ACF=∠ACF+ECF90°,

∴∠ECF=∠CAF,

∵∠EAD=∠DCB,

∴∠CAD2DCB,

CD是斜邊AB上的中線,

CDBD,

∴∠B=∠DCB

∴∠CAB2B,

∵∠B+CAB90°,

∴∠B30°;

2)∵∠B=∠BAE=∠CAE30°,

AEBECEAE,

BC3CE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2m2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為Bx10),Cx20),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動(dòng)點(diǎn)Et0)過點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為PQ

1)求拋物線的解析式;

2)當(dāng)0t≤8時(shí),求△APC面積的最大值;

3)當(dāng)t2時(shí),是否存在點(diǎn)P,使以AP、Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長方體形狀的包裝盒(A.B.C.D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn)).已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).

(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;

(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點(diǎn)在線段外,且,求證:點(diǎn)在線段的垂直平分線上,在證明該結(jié)論時(shí),需添加輔助線,則作法不正確的是(

A.的平分線于點(diǎn)B.過點(diǎn)于點(diǎn)

C.中點(diǎn),連接D.過點(diǎn),垂足為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點(diǎn)是線段上一動(dòng)點(diǎn)(不與重合).

1)如圖1,當(dāng)點(diǎn)的中點(diǎn),過點(diǎn)的延長線于點(diǎn),求證:;

2)連接,作,于點(diǎn).時(shí),如圖2

______

②求證:為等腰三角形;

(3)連接CD,∠CDE=30°,在點(diǎn)的運(yùn)動(dòng)過程中,的形狀可以是等腰三角形嗎?若可以,請求出的度數(shù);若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】毎年6月,學(xué)校門口的文具店都會(huì)購進(jìn)畢業(yè)季暢銷商品進(jìn)行銷售.已知校門口“小光文具店“在5月份就售出每本8元的A種品牌同學(xué)錄90本,每本10元的B種品牌同學(xué)錄175本.

1)某班班長幫班上同學(xué)代買A種品牌和B種品牌同學(xué)錄共27本,共花費(fèi)246元,請問班長代買A種品牌和B種品牌同學(xué)錄各多少本?

2)該文具店在6月份決定將A種品牌同學(xué)錄每本降價(jià)3元后銷售,B種品牌同學(xué)錄每本降價(jià)a%a0)后銷售.于是,6月份該文具店A種品牌同學(xué)錄的銷量比5月份多了a%,B種品牌同學(xué)錄的銷量比5月份多了(a+20%,且6月份AB兩種品牌的同學(xué)錄的銷售總額達(dá)到了2550元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,可以由繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)與點(diǎn)是對應(yīng)點(diǎn),點(diǎn)與點(diǎn)是對應(yīng)點(diǎn),連接,且、、在同一條直線上,則的長為(

A.6B.C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線BD上有一點(diǎn)P,使PC+PE的和最小,則這個(gè)最小值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援雅安災(zāi)區(qū),某學(xué)校計(jì)劃用“義捐義賣”活動(dòng)中籌集的部分資金用于購買A,B兩種型號的學(xué)習(xí)用品共1000件,已知A型學(xué)習(xí)用品的單價(jià)為20元,B型學(xué)習(xí)用品的單價(jià)為30元.

(1)若購買這批學(xué)習(xí)用品用了26000元,則購買A,B兩種學(xué)習(xí)用品各多少件?

(2)若購買這批學(xué)習(xí)用品的錢不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

同步練習(xí)冊答案