(2008•眉山)如圖,在平面直角坐標系內(nèi),以y軸為對稱軸的拋物線經(jīng)過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數(shù)的關系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過原點的拋物線大致圖象;②設沿x軸向右平移后經(jīng)過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關系,并說明理由;
(3)P點是沿x軸向右平移后經(jīng)過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

【答案】分析:(1)先根據(jù)直線的解析式求出拋物線頂點A的坐標,然后根據(jù)M的坐標求出拋物線的解析式.
(2)根據(jù)(1)得出的拋物線可設出平移后拋物線的解析式,然后將原點坐標代入即可求出平移后函數(shù)的解析式.進而可求出向右平移后拋物線對稱軸與直線AB的交點.然后證OC是否與AB垂直即可.
(3)存在要分兩種情況進行討論:
①以OA、AC為邊,那么將C點向下平移OA個單位即可得出P點的坐標.
②以OA為邊,AC為對角線,將C點坐標向上平移OA個單位即可得出P點坐標.
解答:解:(1)易知:A(0,2),
因此可設拋物線的解析式為y=ax2+2,已知拋物線過M點,
則有:a×(-2+2=0,解得a=-;
∴拋物線的解析式為y=-x2+2.

(2)設向右平移h(h>0)個單位,則拋物線的解析式為y=-(x-h)2+2,
已知拋物線過原點則有:0=-×h2+2,
解得h=;
∴向右平移后拋物線的解析式為y=-(x-2+2;
∴其對稱軸為x=
易知C點坐標為(,),
∴OC=
在三角形OAC,OC=,OA=2,AC=1,
∴OA2=OC2+AC2
∴OC⊥AB,
∴以O為圓心,OC為半徑的圓與直線AB相切.

(3)P(,-)或(,).
點評:本題主要考查了二次函數(shù)解析式的確定、二次函數(shù)圖象的平移、直線與圓的位置關系、平行四邊形的判定等知識點.綜合性較強,考查學生數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2008•眉山)如圖,在平面直角坐標系內(nèi),以y軸為對稱軸的拋物線經(jīng)過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數(shù)的關系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過原點的拋物線大致圖象;②設沿x軸向右平移后經(jīng)過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關系,并說明理由;
(3)P點是沿x軸向右平移后經(jīng)過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《三角形》(17)(解析版) 題型:解答題

(2008•眉山)如圖,E是矩形ABCD的邊DC延長線上一點,連接AE分別交BC,BD于F,G.
(1)圖中有全等三角形嗎?(對角線分矩形所得兩個三角形除外)若有,請寫出一對來;若沒有,請?zhí)砑右粋條件(不添加輔助線和不改變圖中字母),使得圖中有全等三角形,并寫出來;
(2)圖中有相似三角形嗎?設矩形ABCD的周長為20,對角線長為2,求DE的長,使得你找出的一對相似三角形的相似比為2:3.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年四川省眉山市中考數(shù)學試卷(解析版) 題型:解答題

(2008•眉山)如圖,E是矩形ABCD的邊DC延長線上一點,連接AE分別交BC,BD于F,G.
(1)圖中有全等三角形嗎?(對角線分矩形所得兩個三角形除外)若有,請寫出一對來;若沒有,請?zhí)砑右粋條件(不添加輔助線和不改變圖中字母),使得圖中有全等三角形,并寫出來;
(2)圖中有相似三角形嗎?設矩形ABCD的周長為20,對角線長為2,求DE的長,使得你找出的一對相似三角形的相似比為2:3.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年四川省眉山市中考數(shù)學試卷(解析版) 題型:解答題

(2008•眉山)如圖,方格紙中△ABC的三個頂點均在格點上,將△ABC向右平移5格得到△A1B1C1,再將△A1B1C1繞點A1逆時針旋轉180°,得到△A1B2C2
(1)在方格紙中畫出△A1B1C1和△A1B2C2;
(2)設B點坐標為(-3,-2),B2點坐標為(4,2),△ABC與△A1B2C2是否成中心對稱?若成中心對稱,請畫出對稱中心,并寫出對稱中心的坐標;若不成中心對稱,請說明理由.

查看答案和解析>>

同步練習冊答案