如圖,已知Rt△AOB在平面直角坐標(biāo)系中,∠AOB=90°,∠BAO=30°,且A的坐標(biāo)為(3,0),⊙C的圓心坐標(biāo)為(-1,0),半徑為1,若D是⊙C上的一個(gè)動(dòng)點(diǎn),線(xiàn)段DA與y軸交與點(diǎn)E.求:
(1)過(guò)點(diǎn)A、B、C的二次函數(shù)關(guān)系式;
(2)求△ABE面積的最大值.
分析:(1)先根據(jù)∠AOB=90°,∠BAO=30°,且A的坐標(biāo)為(3,0)求出B點(diǎn)坐標(biāo),用待定系數(shù)法求出過(guò)點(diǎn)A、B、C的二次函數(shù)關(guān)系式即可;
(2)由題意可得當(dāng)⊙C與AD相切時(shí),△ABE面積最大,然后連接CD,由切線(xiàn)的性質(zhì),根據(jù)勾股定理,可求得AD的長(zhǎng),易證得△AOE∽△ADC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,易求得OE的長(zhǎng),繼而求得△ABE面積的最大值.
解答:解:(1)∵Rt△AOB在平面直角坐標(biāo)系中,∠AOB=90°,∠BAO=30°,且A的坐標(biāo)為(3,0),
∴B(0,
3
),
設(shè)過(guò)A、B、C三點(diǎn)的函數(shù)關(guān)系式為y=a(x+1)(x-3),把點(diǎn)B(0,
3
)代入得,
3
=a×1×(-3),解得a=-
3
3
,
∴過(guò)點(diǎn)A、B、C的二次函數(shù)關(guān)系式為:y=-
3
3
(x+1)(x-3),即y=-
3
3
x2+
2
3
3
x+
3


(2)∵△ABE的高OA是定值,
∴BE越長(zhǎng),則△ABE的面積越大,
∴當(dāng)⊙C與AD相切時(shí),△ABE面積最大,連接CD,
則∠CDA=90°,
∵A(3,0),B(0,
3
),⊙C的圓心為點(diǎn)C(-1,0),半徑為1,
∴CD=1,AC=3+1=4,
∴AD=
AC2-CD2
=
42-12
=
15
,
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,
OA
AD
=
OE
CD
,
3
15
=
OE
1
,解得OE=
15
5

∴BE=OB+OE=
3
+
15
5
,
∴S△ABE最大=
1
2
BE•OA=
1
2
×(
3
+
15
5
)×3=
3
3
2
+
3
15
10
點(diǎn)評(píng):本題考查的是二次函數(shù)綜合題,涉及到切線(xiàn)的性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意輔助線(xiàn)的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC外切于⊙O,E、F、H為切點(diǎn),∠ABC=90°,直線(xiàn)FE、CB相交于D點(diǎn),連接AO、HE、HF,則下列結(jié)論:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正確結(jié)論的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•遼陽(yáng))如圖,已知Rt△ABO,∠BAO=90°,以點(diǎn)O為坐標(biāo)原點(diǎn),OA所在直線(xiàn)為y軸,建立平面直角坐標(biāo)系,AO=3,∠AOB=30°,將Rt△ABO沿OB翻折后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)D處.
(1)求D點(diǎn)坐標(biāo);
(2)若拋物線(xiàn)y=ax2+bx+3(a≠0)經(jīng)過(guò)B、D兩點(diǎn),求此拋物線(xiàn)的表達(dá)式;
(3)若拋物線(xiàn)的頂點(diǎn)為E,它的對(duì)稱(chēng)軸與OB交于點(diǎn)F,點(diǎn)P為射線(xiàn)OB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線(xiàn),交拋物線(xiàn)于點(diǎn)M.是否存在點(diǎn)P,使得以E、F、M、P為頂點(diǎn)的四邊形為等腰梯形?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
參考公式:拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-
b
2a
4ac-b2
4a
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知Rt△ABO,∠BAO=90°,以點(diǎn)O為坐標(biāo)原點(diǎn),OA所在直線(xiàn)為y軸,建立平面直角坐標(biāo)系,AO=3,∠AOB=30°,將Rt△ABO沿OB翻折后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)D處.
(1)求D點(diǎn)坐標(biāo);
(2)若拋物線(xiàn)y=ax2+bx+3(a≠0)經(jīng)過(guò)B、D兩點(diǎn),求此拋物線(xiàn)的表達(dá)式;
(3)若拋物線(xiàn)的頂點(diǎn)為E,它的對(duì)稱(chēng)軸與OB交于點(diǎn)F,點(diǎn)P為射線(xiàn)OB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線(xiàn),交拋物線(xiàn)于點(diǎn)M.是否存在點(diǎn)P,使得以E、F、M、P為頂點(diǎn)的四邊形為等腰梯形?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
參考公式:拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-數(shù)學(xué)公式,數(shù)學(xué)公式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年遼寧省遼陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知Rt△ABO,∠BAO=90°,以點(diǎn)O為坐標(biāo)原點(diǎn),OA所在直線(xiàn)為y軸,建立平面直角坐標(biāo)系,AO=3,∠AOB=30°,將Rt△ABO沿OB翻折后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)D處.
(1)求D點(diǎn)坐標(biāo);
(2)若拋物線(xiàn)y=ax2+bx+3(a≠0)經(jīng)過(guò)B、D兩點(diǎn),求此拋物線(xiàn)的表達(dá)式;
(3)若拋物線(xiàn)的頂點(diǎn)為E,它的對(duì)稱(chēng)軸與OB交于點(diǎn)F,點(diǎn)P為射線(xiàn)OB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線(xiàn),交拋物線(xiàn)于點(diǎn)M.是否存在點(diǎn)P,使得以E、F、M、P為頂點(diǎn)的四邊形為等腰梯形?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
參考公式:拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-,).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省武漢市新洲區(qū)初中畢業(yè)年級(jí)數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•新洲區(qū)模擬)如圖,已知Rt△ABC外切于⊙O,E、F、H為切點(diǎn),∠ABC=90°,直線(xiàn)FE、CB相交于D點(diǎn),連接AO、HE、HF,則下列結(jié)論:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正確結(jié)論的個(gè)數(shù)為( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案