【題目】為滿足同學(xué)們課外閱讀的需求,某中學(xué)圖書館向出版社郵購(gòu)科普系列圖書,每本書單價(jià)為16元,書的價(jià)錢和郵費(fèi)是通過(guò)郵局匯款,相關(guān)的書價(jià)折扣、郵費(fèi)和匯款的匯費(fèi)如下表所示(總費(fèi)用=總書價(jià)+總郵費(fèi)+總匯費(fèi))

購(gòu)書數(shù)量

折扣

郵費(fèi)

匯費(fèi)

不超過(guò)10

九折

6

100元匯款需匯費(fèi)1

(匯款不足100元時(shí)按100元匯款收匯費(fèi))

超過(guò)10

八折

總書價(jià)的10%

100元匯款需匯費(fèi)1

(匯款不足100元的部分不收匯費(fèi))

(1)若一次郵購(gòu)7本,共需總費(fèi)用為   元.

(2)已知學(xué)校圖書館需購(gòu)圖書的總數(shù)是10的整倍數(shù),且超過(guò)10本.

①若分次郵購(gòu),分別匯款,每次郵購(gòu)10本,總費(fèi)用為1064元時(shí),共郵購(gòu)了多本圖書?

②若你是學(xué)校圖書館負(fù)責(zé)人,從節(jié)約的角度出發(fā),在每次郵購(gòu)10一次性郵購(gòu)這兩種方式中選擇一種,你會(huì)選擇哪一種?計(jì)算并說(shuō)明理由.

【答案】(1)108.8元;(2)①共郵購(gòu)了70本;②從節(jié)約的角度出發(fā),選擇一次性郵購(gòu)的方式,理由見(jiàn)解析.

【解析】

(1)根據(jù)總費(fèi)用=7本書的總價(jià)×0.9+總郵費(fèi)+總匯費(fèi)就可以求出結(jié)論;
(2)①設(shè)一共郵購(gòu)了x本書,分郵購(gòu),需要書款為元,郵費(fèi)為

元,匯費(fèi)為元,根據(jù)題意建立方程求出其解就可以了;
②分別計(jì)算出每次郵購(gòu)10本和一次郵購(gòu)的總費(fèi)用的表達(dá)式,再比較其大小就可以得出結(jié)論;

(1)由題意可得,

總書價(jià)為:16×7×0.9=100.8(元),

∴總的費(fèi)用為:100.8+6+2=108.8(元),

故答案為:108.8元;

(2)①設(shè)共郵購(gòu)了x本圖書,

16×10×0.9=144(元),

解得,x=70,

答:共郵購(gòu)了70本;

②從節(jié)約的角度出發(fā),選擇一次性郵購(gòu)的方式,

理由:設(shè)共購(gòu)買了x本,

按每次郵購(gòu)10本,最后的總費(fèi)用為:(元),

一次性郵購(gòu)的總書價(jià)和郵費(fèi)為:16×0.8x(1+10%)=14.08x,

∵超過(guò)10本,不足100元的部分不收匯費(fèi),

∴匯費(fèi)不大于:0.1408x元,

15.2x﹣(14.08x+0.1408x)=0.9792x>0,

∴從節(jié)約的角度出發(fā),選擇一次性郵購(gòu)的方式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+mx+2的圖象與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交交于點(diǎn)B,且OA:OB=1:2.設(shè)此二次函數(shù)圖象的頂點(diǎn)為D.

(1)求這個(gè)二次函數(shù)的解析式;
(2)將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)B落到點(diǎn)C的位置.將上述二次函數(shù)圖象沿y軸向上或向下平移后經(jīng)過(guò)點(diǎn)C.請(qǐng)直接寫出點(diǎn)C的坐標(biāo)和平移后所得圖象的函數(shù)解析式;
(3)設(shè)(2)中平移后所得二次函數(shù)圖象與y軸的交點(diǎn)為B1 , 頂點(diǎn)為D1 . 點(diǎn)P在平移后的二次函數(shù)圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋中裝有5個(gè)黃球、13個(gè)黑球和22個(gè)紅球,它們除顏色外都相同。

1)求從袋中摸出一個(gè)球是黃球的概率;

2)現(xiàn)從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個(gè)球是黃球的概率不小于,問(wèn)至少取出了多少個(gè)黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)O是等邊△ABC內(nèi)的任一點(diǎn),連接OA,OB,OC.
(1)如圖1,已知∠AOB=150°,∠BOC=120°,將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC.
①∠DAO的度數(shù)是多少?
②用等式表示線段OA,OB,OC之間的數(shù)量關(guān)系,并證明;
(2)設(shè)∠AOB=α,∠BOC=β.
①當(dāng)α,β滿足什么關(guān)系時(shí),OA+OB+OC有最小值?請(qǐng)?jiān)趫D2中畫出符合條件的圖形,并說(shuō)明理由;
②若等邊△ABC的邊長(zhǎng)為1,直接寫出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=2(x+1)(x﹣a),其中a>0,若當(dāng)x≤2時(shí),y隨著x增大而減小,當(dāng)x≥2時(shí)y隨著x的增大而增大,則a的值是(
A.3
B.5
C.7
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程:①3x﹣1=2x+1, , ,x﹣1=x中,解為x=2的是方程(  )

A. 、②和③ B. 、③和④ C. 、③和④ D. 、②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,OA=3,將扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)n°(0<n<180)后得到扇形O′AB′,當(dāng)點(diǎn)O在弧AB′上時(shí),n為 , 圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一張長(zhǎng)方形紙片,剪下一個(gè)正方形,剩下一個(gè)長(zhǎng)方形,稱為第一次操作;在剩下的長(zhǎng)方形紙片中再剪下一個(gè)正方形,剩下一個(gè)長(zhǎng)方形,稱為第二次操作;;若在第n次操作后,剩下的長(zhǎng)方形為正方形,則稱原長(zhǎng)方形為n階奇異長(zhǎng)方形.如圖1,長(zhǎng)方形ABCD中,若AB=2,BC=6,則稱長(zhǎng)方形ABCD2階奇異長(zhǎng)方形

(1)判斷與操作:如圖2,長(zhǎng)方形ABCD長(zhǎng)為10,寬為6,它是奇異長(zhǎng)方形,請(qǐng)寫出它是____階奇異長(zhǎng)方

形,并在圖中畫出裁剪線;

探究與計(jì)算:已知長(zhǎng)方形ABCD的一邊長(zhǎng)為24,另一邊長(zhǎng)為a (a<24),且它是3階奇異長(zhǎng)方形,請(qǐng)畫出所

有可能的長(zhǎng)方形ABCD及裁剪線的示意圖,并求出相應(yīng)的a值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,某超市從一樓到二樓有一自動(dòng)扶梯,圖2是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為1:2.4,AB的長(zhǎng)度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN,在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)( )

A.10.8米
B.8.9米
C.8.0米
D.5.8米

查看答案和解析>>

同步練習(xí)冊(cè)答案