【題目】ABC中,∠BAC=90°,AB=2AC,點A(2,0)、B(0,4),點C在第一象限內,雙曲線y=x>0)經(jīng)過點C.將ABC沿y軸向上平移m個單位長度,使點A恰好落在雙曲線上,則m的值為________

【答案】2

【解析】

作CH⊥x軸于H.由相似三角形的性質求出點C坐標,求出k的值即可解決問題.

CH⊥x軸于H.

∵A(2,0)、B(0,4),

∴OA=2,OB=4,

∵∠ABO+∠OAB=90,∠OAB+∠CAH=90,

∴∠ABO=∠CAH,∵∠AOB=∠AHC,

∴△ABO∽△CAH,

===2,

∴CH=1,AH=2,

∴C(4,1),

∵C(4,1)y=上,

∴k=4,

∴y=,

x=2時,y=2,

∵將△ABC沿y軸向上平移m個單位長度,使點A恰好落在雙曲線上,

∴m=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.

(1)如圖1,若A(-1,0),B(3,0),

求拋物線的解析式;

② P為拋物線上一點,連接AC,PC,∠PCO=3∠ACO,求點P的橫坐標;

(2)如圖2,Dx軸下方拋物線上一點,連DA,DB,∠BDA+2∠BAD=90°,求點D的縱坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的內切圓與邊相切于點,過點于點,過點的切線交于點,則的值等于(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,將繞點旋轉角,于點,分別交、兩點.

在旋轉過程中,線段有怎樣的數(shù)量關系?證明你的結論;

時,試判斷四邊形的形狀,并說明理由;

的情況下,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中函數(shù) y kx y 的圖象交于 A、B 兩點, A y 軸的垂線,交函數(shù)的圖象于點 C,連接 BC,則ABC 的面積為(

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點為邊上一動點,過點,垂足為點,延長的延長線于點,若,設長為,長為,則關于的函數(shù)關系式為__________.(不需寫出的取值范圍)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=x>0)的圖象與直線y=kx+b都經(jīng)過點P(2,m),Q(n,4),且直線x軸于點A,交y軸于點B,連接OP,OQ.

(1)直接寫出m,n的值;m= , n= ;

(2)求直線的函數(shù)表達式;

(3)APBQ相等嗎?寫出你的判斷,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自學下面材料后,解答問題.

分母中含有未知數(shù)的不等式叫分式不等式.如:; <0等.那么如何求出它們的解集呢?

根據(jù)我們學過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負.其字母表達式為:

(1)若a>0,b>0,則>0;若a<0,b<0,則>0;

(2)若a>0,b<0,則<0;若a<0,b>0,則<0.

反之:(1)若>0,則

(2)若<0,則      

根據(jù)上述規(guī)律,求不等式>0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0)。

(1)求點B的坐標;

(2)已知,C為拋物線與y軸的交點。

若點P在拋物線上,且,求點P的坐標;

設點Q是線段AC上的動點,作QDx軸交拋物線于點D,求線段QD長度的最大值。

查看答案和解析>>

同步練習冊答案