如圖,在平面直角坐標系xOy中,直線AB與x軸、y軸分別交于點A,B,與反比例函數(shù)y=
k
x
(k為常數(shù),且k>0)在第一象限的圖象交于點E,F(xiàn).過點E作EM⊥y軸于M,過點F作FN⊥x軸于N,直線EM與FN交于點C.若
BE
BF
=
1
m
(m為大于l的常數(shù)).記△CEF的面積為S1,△OEF的面積為S2,則
S1
S2
=______.(用含m的代數(shù)式表示)
過點F作FD⊥BO于點D,EW⊥AO于點W,

BE
BF
=
1
m
(m為大于l的常數(shù)),
ME
DF
=
1
m
,
∵ME•EW=FN•DF,
ME
DF
=
FN
EW
=
1
m

設E點坐標為:(x,my),則F點坐標為:(mx,y),
∴△CEF的面積為:S1=
1
2
(mx-x)(my-y)=
1
2
(m-1)2xy,
∵△OEF的面積為:S2=S矩形CNOM-S1-S△MEO-S△FON
=MC•CN-
1
2
(m-1)2xy-
1
2
ME•MO-
1
2
FN•NO
=mx•my-
1
2
(m-1)2xy-
1
2
x•my-
1
2
y•mx
=m2xy-
1
2
(m-1)2xy-mxy
=
1
2
(m2-1)xy
=
1
2
(m+1)(m-1)xy,
S1
S2
=
1
2
(m-1)
2
xy
1
2
(m-1)(m+1)xy
=
m-1
m+1

故答案為:
m-1
m+1
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=x與反比例函數(shù)y=
k
x
(x>0)的圖象交于點A,AB⊥y軸,垂足為B,點C在射線BA上(端點除外),點E在x軸上,且∠OCE=90°,CH⊥x軸,垂足為H,并與反比例函數(shù)y=
k
x
圖象交于點G.
(1)若點B的坐標為(0,4),求k的值;
(2)在(1)的條件下,求證:HG=HE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知雙曲線y1=
k
x
(k>0)
與直線y2=k'x交于A,B兩點,點A在第一象限.試解答下列問題:
(1)若點A的坐標為(4,2),則點B的坐標為______;當x滿足:______時,y1>y2;
(2)過原點O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點,點P在第一象限,如圖2所示.
①四邊形APBQ一定是______;
②若點A的坐標為(3,1),點P的橫坐標為1,求四邊形APBQ的面積;
③設點A、P的橫坐標分別為m、n,四邊形APBQ可能是矩形嗎?若可能,求m,n應滿足的條件;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

反比例函數(shù)y=
k
x
(k≠0)的圖象經(jīng)過P,如圖所示,根據(jù)圖象可知,反比例函數(shù)的解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,雙曲線y=
k
x
過點A(-1,3).
(1)求k的值;
(2)若過點A的直線y=-2x+b與x軸交于點B,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,反比例函數(shù)y=
k
x
的圖象經(jīng)過點P,則k=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,半圓O的直徑AD=12cm,AB,BC,CD分別與半圓O切于點A,E,D.
(1)設AB=x,CD=y,求y與x之間的函數(shù)關系式;
(2)如果CD=6,判斷四邊形ABCD的形狀;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y=
k
x
的圖象上.若點A的坐標為(-2,-2),則k的值為( 。
A.-2B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,過點P(-4,3)作x軸,y軸的垂線,分別交x軸,y軸于A、B兩點,交雙曲線y=
k
x
(k≥2)于E、F兩點.
(1)點E的坐標是______,點F的坐標是______;(均用含k的式子表示)
(2)判斷EF與AB的位置關系,并證明你的結論;
(3)記S=S△PEF-S△OEF,S是否有最小值?若有,求出其最小值;若沒有,請你說明理由.

查看答案和解析>>

同步練習冊答案