解:(1)線段AD與線段CE的關(guān)系是AD⊥EC,AD=EC;
理由:連接AD、CE;
∵△ABC、△BED都是等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠EBD=90°,
∴△ABD≌△CBE,
∴AD=CE,∠DAB=∠BCE;
∵∠BEC+∠BCE=90°,
∴∠BEC+∠DAE=90°,即AD⊥CE;
故線段AD與線段EC的關(guān)系是AD⊥EC,AD=EC.
(2)如圖2,連接AD、EC并延長,設交點為點F;
∵△ABC∽△DBE,
∴
,
∴
.
∵∠ABC=∠DBE=90°,
∴∠1+∠3=90°,∠2+∠3=90°
∴∠1=∠2
∴△ABD∽△CBE.
∴
.
在Rt△ACB中,
,∵
,
∴
.
又∵∠DBE=90°,∠DEB=30°,
∴∠4=60°,
∴∠5+∠6=120°.
∵△ABD∽△CBE,
∴∠5=∠CEB=30°+∠7,
∴∠7=∠5-30°,∠6=120°-∠5,
∴∠7+∠6=90°,
∴∠DFE=90°
即AD⊥CE.
(3)在繞點B旋轉(zhuǎn)的過程中,直線AD與EC夾角的度數(shù)不改變,且∠AFE=(180-α-β)度.
分析:(1)連接AD、CE,然后證得△ABD≌△BCE,根據(jù)所得的等角和等邊來判斷AD、EC的關(guān)系.
(2)連接AD、EC并延長,設交點為點F,根據(jù)已知條件,易證得△ABD∽△CBE,得AB:BC=BD:BE,而∠1、∠2同為∠3的余角,則可證得△ABD=△CBE,得∠5=∠7+30°,而∠6=120°-∠5,由此可證得∠7+∠6=90°,即AD⊥CE.
(3)根據(jù)上面的求解過程可知:在繞點B旋轉(zhuǎn)的過程中,直線AD與EC夾角的度數(shù)不改變,解題思路和方法同(2).
點評:本題考查了圖形的旋轉(zhuǎn)變化以及相似三角形的判定和性質(zhì),理清圖中角與角之間的關(guān)系,是解答此題的關(guān)鍵.