【題目】設平面內一點到等邊三角形中心的距離為d,等邊三角形的內切圓半徑為r,外接圓半徑為R.對于一個點與等邊三角形,給出如下定義:滿足r≤d≤R的點叫做等邊三角形的中心關聯(lián)點. 在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣ ,﹣1),C( ,﹣1).
(1)已知點D(2,2),E( ,1),F(xiàn)(﹣ ,﹣1).在D,E,F(xiàn)中,是等邊△ABC的中心關聯(lián)點的是;
(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°. ①若線段AM上存在等邊△ABC的中心關聯(lián)點P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b上總存在等邊△ABC的中心關聯(lián)點;(直接寫出答案,不需過程)
(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為 .當Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.
【答案】
(1)E、F
(2)①解:如圖1中,由題意A(0,2),M( ,0).
可求得直線AM的解析式為 .
經驗證E在直線AM上.
因為OE=OA=2,∠MAO=60°,
所以△OAE為等邊三角形,
所以AE邊上的高長為 .
當點P在AE上時, ≤OP≤2.
所以當點P在AE上時,點P都是等邊△ABC的中心關聯(lián)點.
所以0≤m≤ ;
②如圖1﹣1中,設平移后的直線交y軸于G,作這條直線的垂線垂足為H.
當OH=2時,在Rt△OHG中,∵OH=2,∠HOG=30°,
∴cos30°= ,
∴OG= ,
∴滿足條件的b的值為﹣ ≤b≤2;
(3)存在.理由:如圖2中,設Q(m,﹣1).
由題意當OQ= 時,⊙Q上所有點都是等邊△ABC的中心關聯(lián)點,
= ,
解得m= ,
∴t=
【解析】解:(1)由題意R=2,r=1,點O是△ABC的中心, ∵OD=2 ,OE=2,OF= ,
∴點E、F是△ABC的中心關聯(lián)點
故答案為E,F(xiàn);
(1)根據(jù)中心關聯(lián)點,求出R、r、d即可判斷;(2)①由題意可知,點E在直線AM上,當點P在AE上時,點P都是等邊△ABC的中心關聯(lián)點;②如圖1﹣1中,設平移后的直線交y軸于G,作這條直線的垂線垂足為H.當OH=2時,求出OG即可判斷;(3)存在.理由:如圖2中,設Q(m,﹣1).由題意當OQ= 時,⊙Q上所有點都是等邊△ABC的中心關聯(lián)點,理由兩點間距離公式即可求解.
科目:初中數(shù)學 來源: 題型:
【題目】一元二次方程指:含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2的等式,求一元二次方程解的方法如下:第一步:先將等式左邊關于x的項進行配方, ,第二步:配出的平方式保留在等式左邊,其余部分移到等式右邊,;第三步:根據(jù)平方的逆運算,求出或-3;第四步:求出.類比上述求一元二次方程根的方法,(1)解一元二次方程:;
(2)求代數(shù)式的最小值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A(﹣2,0),B(0,4),以B點為直角頂點在第二象限作等腰直角△ABC.
(1)求C點的坐標;
(2)在坐標平面內是否存在一點P,使△PAB與△ABC全等?若存在,求出P點坐標,若不存在,請說明理由;
(3)如圖2,點E為y軸正半軸上一動點,以E為直角頂點作等腰直角△AEM,過M作MN⊥x軸于N,求OE﹣MN的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).
(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數(shù)列關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,P是BC上一點,E是AB上一點,PD平分∠APC,PE⊥PD,連接DE交AP于F,在以下判斷中,不正確的是( )
A.當P為BC中點,△APD是等邊三角形
B.當△ADE∽△BPE時,P為BC中點
C.當AE=2BE時,AP⊥DE
D.當△APD是等邊三角形時,BE+CD=DE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖.
(1)①畫出△ABC關于y軸對稱的△A1B1C1;
②畫出△ABC繞點O按順時針方向旋轉90°后的△A2B2C2;
(2)判斷△A1B1C1和△A2B2C2是不是成軸對稱?如果是,請在圖中作出它們的對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產的某種產品每件成本為40元,經市場調查整理出如下信息:
①該產品90天內日銷售量(m件)與時間(第x天)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:
時間(第x天) | 1 | 3 | 6 | 10 | … |
日銷售量(m件) | 198 | 194 | 188 | 180 | … |
②該產品90天內每天的銷售價格與時間(第x天)的關系如下表:
時間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價格(元/件) | x+60 | 100 |
(1)求m關于x的一次函數(shù)表達式;
(2)設銷售該產品每天利潤為y元,請寫出y關于x的函數(shù)表達式,并求出在90天內該產品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格﹣每件成本)】
(3)在該產品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完;銷售金額與賣西瓜千克數(shù)之間的關系如圖所示,那么小李賺了_________.元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com