【題目】已知:拋物線y= (x-1)2-3
(1)寫出拋物線的開口方向、對(duì)稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個(gè)最大(。┲;
(3)設(shè)拋物線與y軸的交點(diǎn)為P,與x軸的交點(diǎn)為Q,求直線PQ的函數(shù)解析式.

【答案】
(1)

解:拋物線y= (x-1)2-3,

a= >0

∴拋物線的開口向上,對(duì)稱軸為直線x=1;


(2)

解:∵a= >0

∴函數(shù)y有最小值,最小值為-3;


(3)

解:令x=0,y= (0-1)2-3=- ,所以,點(diǎn)P的坐標(biāo)為(0,- ),令y=0,則 (x-1)2-3=0,

解得x1=-1,x2=3,所以,點(diǎn)Q的坐標(biāo)為(-1,0)或(3,0),當(dāng)點(diǎn)P(0,- ),Q(-1,0)時(shí),設(shè)直線PQ的解析式為y=kx+b,則, ,解得 ,所以直線PQ的解析式為y=- x- ,

當(dāng)P(0,- ),Q(3,0)時(shí),設(shè)直線PQ的解析式為y=mx+n,

,解得 ,所以,直線PQ的解析式為y= x- ,綜上所述,直線PQ的解析式為y=- x- y= x- .


【解析】(1)根據(jù)二次函數(shù)的性質(zhì),寫出開口方向與對(duì)稱軸即可;(2)根據(jù)a是正數(shù)確定有最小值,再根據(jù)函數(shù)解析式寫出最小值;(3)分別求出點(diǎn)P、Q的坐標(biāo),再根據(jù)待定系數(shù)法求函數(shù)解析式解答.
【考點(diǎn)精析】利用二次函數(shù)的性質(zhì)和二次函數(shù)的最值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減;如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列多項(xiàng)式中能用平方差公式分解的有( 。

﹣a2﹣b29x2﹣4y2;x2﹣4y2;(﹣m)2﹣(﹣n)2;

﹣144a2+121b2;m2+2n2

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個(gè)不完整的統(tǒng)計(jì)圖(如圖).

請(qǐng)根據(jù)上面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下4個(gè)問題:

(1)這次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生.

(2)補(bǔ)全條形統(tǒng)計(jì)圖中的缺項(xiàng).

(3)在扇形統(tǒng)計(jì)圖中,選擇教師傳授的占_____%,選擇小組合作學(xué)習(xí)的占_____%.

(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有_____人選擇小組合作學(xué)習(xí)模式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊(duì)成績的中位數(shù)是 分,乙隊(duì)成績的眾數(shù)是 分;

(2)計(jì)算乙隊(duì)的平均成績和方差;

(3)已知甲隊(duì)成績的方差是1.4,則成績較為整齊的是 隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一點(diǎn)A從數(shù)軸上表示+2的點(diǎn)開始移動(dòng),第一次先向左移動(dòng)1個(gè)單位,再向右移動(dòng)2個(gè)單位;第二次先向左移動(dòng)3個(gè)單位,再向右移動(dòng)4個(gè)單位;第三次先向左移動(dòng)5個(gè)單位,再向右移動(dòng)6個(gè)單位……

(1)寫出第一次移動(dòng)后這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為 ;

(2)寫出第二次移動(dòng)后這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為 ;

(3)寫出第五次移動(dòng)后這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為 ;

4寫出第次移動(dòng)結(jié)果這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為

(5)如果第次移動(dòng)后這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為56,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 中, , ,將 繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn) 得到 ,連結(jié) ,求證:四邊形 是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列算式
=±3;② =9;③26÷23=4;④ =2016;⑤a+a=a2
運(yùn)算結(jié)果正確的概率是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,點(diǎn)M是AD邊的中點(diǎn),連接MC,將菱形ABCD翻折,使點(diǎn)A落在線段CM上的點(diǎn)E處,折痕交AB于點(diǎn)N,則線段EC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長FP交BA延長線于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是( 。
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四邊形ECFG=2SBGE

A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案