【題目】在中,,,.
如圖①,將線段繞點順時針旋轉(zhuǎn),所得到與交于點,則的長________;
如圖②,點是邊上一點且,將線段繞點旋轉(zhuǎn),得線段,點始終為的中點,則將線段繞點逆時針旋轉(zhuǎn)________度時,線段的長最大,最大值為________.
【答案】6 180
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)及等腰三角形、等邊三角形的性質(zhì)求解.
(2)當(dāng)將線段AD繞點A逆時針旋轉(zhuǎn)180度時,線段CF的長最大,此時所求CF是Rt△BCD′的斜邊上的中線,它等于斜邊的一半.
(Ⅰ)如下圖①所示:
∵將線段CA繞點C順時針旋轉(zhuǎn),
∴△AMC為等腰三角形,AM=MC
∵∠BAC=,
∴△MBC為等邊三角形,
∴AM=MB=CM
又∵BC=6,
∴AB=2BC=12,
∴CM=6
故答案為:6
(2)∵在RtABC中,∠ACB=,BAC=,BC=6,
∴
當(dāng)將線段AD繞點A逆時針旋轉(zhuǎn)180度時,線段CF的長最大,如圖②所示:
∵AD=AD′,
∴
∵在RtABC中,
∴
∵點F是BD′的中點,
∴
即:當(dāng)將線段AD繞點A逆時針旋轉(zhuǎn)180度時,線段CF的長最大,最大值為
故答案為:180;.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A在反比例函數(shù)y=﹣的圖象上,點D在反比例函數(shù)y=(k≠0)的圖象上,AD∥x軸,AB⊥x軸于B,DC⊥x軸于C,若OB=OC,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,A,E三點都在直線m上,∠BDA=∠AEC=∠BAC,BD=3,CE=6,則DE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD沿著直線BD折疊,使點C落在C/處,BC/交AD于E,AD=8,AB=4,DE的長=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程k2x2﹣2(k+1)x+1=0有兩個實數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k=1時,設(shè)所給方程的兩個根分別為x1和x2,求(x1﹣2)(x2﹣2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了提高學(xué)生的消防意識,舉行了消防知識競賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎和紀(jì)念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:
(1)這次知識競賽共有多少名學(xué)生?
(2)“二等獎”對應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計圖補(bǔ)充完整;
(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,已知,的垂直平分線交于點,交于點,連接.
(1)若,則的度數(shù)是 ;
(2)若,的周長是.
①求的長度;
②若點為直線上一點,請你直接寫出周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com