為了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,則2S=2+22+23+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理計(jì)算出1+5+52+53+…+52009的值是( 。
A、52009-1
B、52010-1
C、
52009-1
4
D、
52010-1
4
分析:仔細(xì)閱讀題目中示例,找出其中規(guī)律,求解本題.
解答:解:根據(jù)題中的規(guī)律,設(shè)S=1+5+52+53+…+52009
則5S=5+52+53+…+52009+52010,
所以5S-S=4S=52010-1,
所以S=
52010-1
4

故選:D.
點(diǎn)評(píng):主要考查了學(xué)生的分析、總結(jié)、歸納能力,規(guī)律型的習(xí)題一般是從所給的數(shù)據(jù)和運(yùn)算方法進(jìn)行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

閱讀理解并解答:
為了求1+2+22+23+24+…+22009的值,可令S=1+2+22+23+24+…+22009
則2S=2+22+23+24+…+22009+22010,因此2S-S=(2+22+23+…+22009+22010)-(1+2+22+23+…+22009)=22010-1.
所以:S=22010-1.即1+2+22+23+24+…+22009=22010-1.
請(qǐng)依照此法,求:1+4+42+43+44+…+42010的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了求1+2+22+23+…+22008+22009的值,可令S=1+2+22+23+…+22008+22009,則2S=2+22+23+24+…+22009+22010,因此2S-S=22010+1,所以1+22+23+…+22008=22010+1仿照以上推理計(jì)算出1+5+52+53+…+52009的值是
52010-1
4
52010-1
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了求1+2+22+…+22009的值,可令S=1+2+22+…+22009,則2S=2+22+…+22010,因此2S-S=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理計(jì)算出1+3-1+3-2+…+3-2009的值是
3-3-2009
2
3-3-2009
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了求1+2+22+…+22009的值,可令s=1+2+22+…+22009,則2s=2+22+23+24+…+22010,因此2s-s=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理計(jì)算出1+7+72+73+…72010的值( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀下列材料:
為了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
則 2S=2+22+23+…+22012②,
②-①得  2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,請(qǐng)計(jì)算:1+4+42+43…+42011

查看答案和解析>>

同步練習(xí)冊(cè)答案