【題目】將 n 個邊長都為 1cm 的正方形按如圖所示的方法擺放,點 A1,A2,…,An 分別是正方形對角線的交點,則 6 個正方形重疊形成的重疊部分的面積和為( )cm2.
A.B.1C.D.()5
【答案】A
【解析】
根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為n-1陰影部分的和
如圖,過正方形 ABCD 的中心 O 作 OM⊥CD 于 M,作 ON⊥BC 于N,則∠EOM=∠FON,∠OM=ON,在△OEM 和△OFN 中,
,
∴△OEM≌△OFN(ASA),
則四邊形 OECF 的面積就等于正方形 OMCN 的面積,
如正方形 ABCD 的邊長是 1,則 OMCN 的面積是,
∴得陰影部分面積等于正方形面積的 ,即是,
5 個這樣的正方形重疊部分(陰影部分)的面積和為×4,∴n 個這樣的正方形重疊部分(陰影部分)的面積和為×(n﹣1),
∴6 個正方形重疊形成的重疊部分的面積和為×5= . 故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2-2x-3的圖象與x軸交于A,B兩點,與y軸交于點C,連接BC,點D為拋物線的頂點,點P是第四象限的拋物線上的一個動點(不與點D重合).
(1)求∠OBC的度數(shù);
(2)連接CD,BD,DP,延長DP交x軸正半軸于點E,且S△OCE=S四邊形OCDB,求此時P點的坐標;
(3)過點P作PF⊥x軸交BC于點F,求線段PF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】6月1日起,我國將全面試行居民階梯式電價,某市出臺了實施細則,具體規(guī)定如下:
設(shè)用電量為a度,當a≤150時,電價為現(xiàn)行電價,每度0.51元;當150<a≤240時,在現(xiàn)行電價基礎(chǔ)上,每度提高0.05元;當a>240時,在現(xiàn)行電價基礎(chǔ)上,每度提高0.30元.設(shè)某戶的月用電量為x(度),電費為y(元).則y與x之間的函數(shù)關(guān)系的大致圖像是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點A1,A2,A3,…都在直線C1C2同側(cè),如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,則△AnCnCn+1的周長為_______(n≥1,且n為整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個轉(zhuǎn)盤被分成等分,每一份上各寫有一個數(shù)字,隨機轉(zhuǎn)動轉(zhuǎn)盤次,第一次轉(zhuǎn)到的數(shù)字數(shù)字為十位數(shù)字,第二次轉(zhuǎn)到的數(shù)字為個位數(shù)字,次轉(zhuǎn)動后組成一個兩位數(shù)(若指針停在等分線上則重新轉(zhuǎn)一次)
用畫樹狀圖的方法求出轉(zhuǎn)動后所有可能出現(xiàn)的兩位數(shù)的個數(shù).
甲、乙兩人做游戲,約定得到的兩位數(shù)是偶數(shù)時甲勝,否則乙勝,這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下列要求作圖.
(1)如圖,陰影部分是由5個小正方形組成的一個直角圖形,請用二種不同的方法分別在下圖方格內(nèi)添涂黑二個小正方形,使陰影部分成為軸對稱圖形.(全等的陰影部分為同一種)
(2)在圖1的網(wǎng)格中找出所有能使AB的長度為5的格點B.
(3)在圖2中構(gòu)造一個腰長為5的等腰三角形,使它的三個頂點都在格點上,且三角形的面積為3.5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△DEF是△ABC經(jīng)過某種變換得到的圖形,點A與點D,點B與點E,
點C與點F分別是對應(yīng)點,觀察點與點的坐標之間的關(guān)系,解答下列問題:
(1)分別寫出點A與點D,點B與點E,點C與點F的坐標,并說說對應(yīng)點的坐標有哪些特征;
(2)若點P(a+3,4﹣b)與點Q(2a,2b﹣3)也是通過上述變換得到的對應(yīng)點,求a,b的值.
(3)求圖中△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形紙片中,,,,將紙片沿過點的直線折疊,使點落在邊上的點處,折痕為.連接并展開紙片.
判斷四邊形的形狀,并說明理由.
取線段的中點,連接、,如果,試說明四邊形是等腰梯形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設(shè)計購買方案,使總費用最低,并求出最低費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com