【題目】如圖,已知等腰直角△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值
【答案】
(1)
證明:∵△ABC是等腰直角三角形,
∴∠C=∠ABC=45°,
∴∠PEA=∠ABC=45°
又∵PE是⊙O的直徑,
∴∠PAE=90°,
∴∠PEA=∠APE=45°,
∴ △APE是等腰直角三角形.
(2)
解:∵△ABC是等腰直角三角形,
∴AC=AB,
同理AP=AE,
又∵∠CAB=∠PAE=90°,
∴∠CAP=∠BAE,
∴△CPA≌△BAE,
∴CP=BE,
在Rt△BPE中,∠PBE=90°,PE=2,
∴PB2+BE2=PE2,
∴CP2+PB2=PE2=4.
【解析】(1)根據(jù)等腰直角三角形性質(zhì)得出∠C=∠ABC=∠PEA=45°,再由PE是⊙O的直徑,得出∠PAE=90°,∠PEA=∠APE=45°,從而得證.
(2)根據(jù)題意可知,AC=AB,AP=AE,再證△CPA≌△BAE,得出CP=BE,依勾股定理即可得證.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線CD⊥AB于點O,∠EOF=90°,射線OP平分∠COF.
(1)如圖1,∠EOF在直線CD的右側(cè):
①若∠COE=30°,求∠BOF和∠POE的度數(shù);
②請判斷∠POE與∠BOP之間存在怎樣的數(shù)量關(guān)系?并說明理由.
(2)如圖2,∠EOF在直線CD的左側(cè),且點E在點F的下方:
①請直接寫出∠POE與∠BOP之間的數(shù)量關(guān)系;
②請直接寫出∠POE與∠DOP之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線l1∥l2,且l3和l1,l2分別相交于A,B兩點,l4和l1,l2分別交于C,D兩點,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
點P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=________;
(2)試找出∠1,∠2,∠3之間的等量關(guān)系,并說明理由;
(3)應(yīng)用(2)中的結(jié)論解答下列問題;
如圖②,點A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù);
(4)如果點P在直線l3上且在A,B兩點外側(cè)運動時,其他條件不變,試探究∠1,∠2,∠3之間的關(guān)系(點P和A,B兩點不重合),直接寫出結(jié)論即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)與墻MN平行且距離為0.8米,已知小汽車車門寬AO為1.2米,當(dāng)車門打開角度∠AOB為40°時,車門是否會碰到墻?請說明理由。(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有以下3句話:①AB∥CD,②∠B=∠C、③∠E=∠F、請以其中2句話為條件,第三句話為結(jié)論構(gòu)造命題.
(1)你構(gòu)造的是哪幾個命題?
(2)你構(gòu)造的命題是真命題還是假命題?請加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實數(shù)根,比如對于方程 ,操作步驟是:
第一步:根據(jù)方程系數(shù)特征,確定一對固定點A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動一個直角三角板,使一條直角邊恒過點A,另一條直角邊恒過點B;
第三步:在移動過程中,當(dāng)三角板的直角頂點落在x軸上點C處時,點C 的橫坐標(biāo)m即為該方程的一個實數(shù)根(如圖1)
第四步:調(diào)整三角板直角頂點的位置,當(dāng)它落在x軸上另一點D處時,點D 的橫坐標(biāo)為n即為該方程的另一個實數(shù)根。
(1)在圖2 中,按照“第四步“的操作方法作出點D(請保留作出點D時直角三角板兩條直角邊的痕跡)
(2)結(jié)合圖1,請證明“第三步”操作得到的m就是方程 的一個實數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個固定點的位置,若要以此方法找到一元二次方程 的實數(shù)根,請你直接寫出一對固定點的坐標(biāo);
(4)實際上,(3)中的固定點有無數(shù)對,一般地,當(dāng) , , , 與a,b,c之間滿足怎樣的關(guān)系時,點P( , ),Q( , )就是符合要求的一對固定點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下兩幅統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:
(1)扇形統(tǒng)計圖中a= , 初賽成績?yōu)?.70m所在扇形圖形的圓心角為°;
(2)補全條形統(tǒng)計圖;
(3)這組初賽成績的眾數(shù)是 m,中位數(shù)是 m;
(4)根據(jù)這組初賽成績確定8人進(jìn)入復(fù)賽,那么初賽成績?yōu)?.60m的運動員楊強(qiáng)能否進(jìn)入復(fù)賽?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在線段AB的延長線上,AC=BC,D在AB的反向延長線上,BD=DC.
(1)在圖上畫出點C和點D的位置;
(2)設(shè)線段AB長為x,則BC=__ __,AD=__ __;(用含x的代數(shù)式表示)
(3)設(shè)AB=12 cm,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D在邊AB上,點E在邊AC上,CE=BD,連接CD,BE,BE與CD相交于點F.
(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數(shù);
(2)如圖2,若AC=AD,求證:EF=FB;
(3)如圖3,在(2)的條件下,若∠CFE=45°,△BCD的面積為4,求線段CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com