如圖,四邊形ABCD是⊙O的內(nèi)接正方形,延長AB到E,使BE=AB,連接CE.
(1)求證:直線CE是⊙O的切線;
(2)連接OE交BC于點F,若OF=2,求EF的長.
(1)連接OC,
∵O為正方形ABCD的中心,
∴∠OCB=45°,
∵AB=BC=BE,∠CBE=90°,
∴△CBE為等腰直角三角形,即∠BCE=45°,
∴∠OCE=∠OCB+∠BCE=90°,
∴CE⊥OC,
則CE為圓O的切線;

(2)過O作OG⊥AB,可得出AG=BG=
1
2
AB=
1
2
BE,
∵FB⊥AE,OG⊥AE,
∴FBOG,
EF
EF+OF
=
BE
BE+GB
,即
EF
EF+2
=
2
3
,
解得:EF=4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點P,AP、BP的延長線分別交半圓O于點C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當點P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當點P在半圓周外時,結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當點P在切線BE外側(cè)時,你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圓心O在邊長為
2
的正方形ABCD的對角線BD上,⊙O過B點且與AD、DC邊均相切,則⊙O的半徑是( 。
A.2(
2
-1)
B.2(
2
+1)
C.2
2
-1
D.2
2
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

含30°角的直角三角板ABC中,∠A=30°.將其繞直角頂點C順時針旋轉(zhuǎn)α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C邊與AB所在直線交于點D,過點D作DEA'B'交CB'邊于點E,連接BE.
(1)如圖1,當A'B'邊經(jīng)過點B時,α=______°;
(2)在三角板旋轉(zhuǎn)的過程中,若∠CBD的度數(shù)是∠CBE度數(shù)的m倍,猜想m的值并證明你的結(jié)論;
(3)設(shè)BC=1,AD=x,△BDE的面積為S,以點E為圓心,EB為半徑作⊙E,當S=
1
3
S△ABC
時,求AD的長,并判斷此時直線A'C與⊙E的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是半圓的直徑,CD是這個半圓的切線,C是切點,且∠ACD=30°,下列四個結(jié)論中不正確的是( 。
A.AB=2ACB.AB2=AC2+BC2
C.BC=
3
AC
D.AB=
2
BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l與⊙O的位置關(guān)系為( 。
A.相交B.相切C.相離D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知正方形紙片ABCD的邊長為4,⊙O的半徑為1,圓心在正方形的中心上,將紙片按圖示方式折疊,使EA′恰好與⊙O相切于點A′,延長FA′交CD邊于點G,則A′G的長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖⊙O的兩條弦AB、CD相交于點E,AC與DB的延長線交于點P,下列結(jié)論中成立的是( 。
A.CE•CD=BE•BAB.CE•AE=BE•DE
C.PC•CA=PB•BDD.PC•PA=PB•PD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ABC=90°,以AB上的點O為圓心,OB的長為半徑的圓與AB交于點E,與AC切于點D
(1)求證:BC=CD;
(2)求證:∠ADE=∠ABD.

查看答案和解析>>

同步練習(xí)冊答案