如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN­—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=        °時,結(jié)論AM=MN仍然成立.
(直接寫出答案,不需要證明)
(1)見解析(2)見解析(3)
解:(1)∵AE=MC
∴BE="BM,"
∴∠BEM=∠EMB=45°,
∴∠AEM=1355°,
又∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:∵
∴△AEM≌△MCN,∴AM=MN
(2)仍然成立.
在邊AB上截取AE=MC,連接ME
∵△ABC是等邊三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°.
∵AE=MC,∴BE=BM
∴∠BEM=∠EMB=60°
∴∠AEM=120°.
∵CN平分∠ACP,∴∠PCN=60°,
∴∠AEM=∠MCN=120°
∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM
∴△AEM≌△MCN,∴AM=MN
(3)
本題主要考查了全等三角形的判定及性質(zhì)問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC中,ADBC邊上的中線,四邊形ABDE是平行四邊形
(1)求證:四邊形ADCE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是菱形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,若正方形ABCD的四個頂點(diǎn)恰好分別在四條平行線l1、l2、l3、l4上,設(shè)這四條直線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).

(1)求證:h1=h3
(2)現(xiàn)在平面直角坐標(biāo)系內(nèi)有四條直線l1、l2、l3、x軸,且l1∥l2∥l3∥x軸,若相鄰兩直線間的距離為1,2,1,點(diǎn)A(4,4)在l1,能否在l2、l3、x軸上各找一點(diǎn)B、C、D,使以這四個點(diǎn)為頂點(diǎn)的四邊形為正方形,若能,請直接寫出B、C、D的坐標(biāo);若不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,已知等邊三角形ABC的邊長為,按圖中所示的規(guī)律,用2012個這樣的三角形鑲嵌而成的四邊形的周長是     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.
其中正確的結(jié)論( 。

 A.①②      B.①③      C.②③     D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把矩形ABCD沿EF折疊,使點(diǎn)C落在點(diǎn)A處,點(diǎn)D落在點(diǎn)G處,若∠CFE=60°,且DE=1,則邊BC的長為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知菱形的兩條對角線長分別為10、24,則它的周長等于(    )
A.34B.240 C.52D.120

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列給出的條件中,能判定四邊形ABCD是平行四邊形的為(    ).
A.AB=BC,AD=CDB.AB=CD,AD∥BC
C.∠A=∠B,∠C=∠DD.AB∥CD,∠A=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,用同樣規(guī)格的花色和白色兩種正方形地磚鋪設(shè)矩形地面,請觀察圖形并解答有關(guān)問題:(1)有第n個圖形中,白色地磚總塊數(shù)為           
(2)在第n個圖形中,花色地磚總塊數(shù)為           
(3)是否存在白色地磚與花色地磚數(shù)量相等的情形?若存在求出n的值,若不存在說明理由。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

查看答案和解析>>

同步練習(xí)冊答案