【題目】如圖,在正方形ABCD中,E是AD的中點(diǎn),F是AB邊上一點(diǎn),BF=3AF,則下列四個(gè)結(jié)論:
①△AEF∽△DCE;
②CE平分∠DCF;
③點(diǎn)B、C、E、F四個(gè)點(diǎn)在同一個(gè)圓上;
④直線EF是△DCE的外接圓的切線;
其中,正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
試題解析:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠A=∠B=∠D=90°,
∵E是AD的中點(diǎn),
∴AE=DE,
∵BF=3AF,
設(shè)AF=a,則BF=3a,AB=BC=CD=AD=4a,
∵AF:DE=1:2,AE:CD=1:2,
∴AE:DE=AE:CD,
∴△AEF∽△DCE,
∴①正確;∠AEF=∠DCE,
∵∠DEC+∠DCE=90°,
∴∠AEF+∠DEC=90°,
∴∠CEF=90°,
∵EF=,CE=,
∴EF:CE=1:2=DE:CD,
∴△CEF∽△CDE,
∴∠FCE=∠DCE,
∴CE平分∠DCF,
∴②正確;
∵∠B=90°,∠CEF=90°,
∴∠B+∠CEF=180°,
∴B、C、E、F四個(gè)點(diǎn)在同一個(gè)圓上,
∴③正確;
∵△DCE是直角三角形,
∴外接圓的圓心是斜邊CE的中點(diǎn),CE是直徑,
∵∠CEF=90°,
∴EF⊥CE,
∴直線EF是△DCE的外接圓的切線,
∴④正確,
正確的結(jié)論有4個(gè).
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=60°,在∠AOB的平分線OM上有一點(diǎn)C,∠DCE=120°,當(dāng)∠DCE的頂點(diǎn)與點(diǎn)C重合,它的兩條邊分別與直線OA、OB相交于點(diǎn)D、E.
(1)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖1),請(qǐng)猜想OE+OD與OC的數(shù)量關(guān)系,并說明理由;
(2)由(圖1)的位置將∠DCE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)θ角(0<θ<90°),線段OD、OE與OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,軸,點(diǎn)、都在反比例函數(shù)上,點(diǎn)在反比例函數(shù)上,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
根據(jù)以往所學(xué)的函數(shù)知識(shí)以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個(gè)問題).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
已知實(shí)數(shù)m,n滿足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值.
解:設(shè)2m2+n2=t,則原方程變?yōu)?/span>(t+1)(t-1)=80,整理得t2-1=80,t2=81,
所以t=土9,因?yàn)?/span>2m2+n2>0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個(gè)整休,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
(1)已知實(shí)數(shù)x、y,滿足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三邊為a、b、c(c為斜邊),其中a、b滿足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,AB=8,點(diǎn)M在圓O上,∠MOB=60°,N是的中點(diǎn),P為AB上一動(dòng)點(diǎn),則PM+PN的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象與x軸交于,B兩點(diǎn),與y軸交于點(diǎn),對(duì)稱軸與x軸交于點(diǎn)H.
(1)求拋物線的函數(shù)表達(dá)式
(2)直線與y軸交于點(diǎn)E,與拋物線交于點(diǎn)P,Q(點(diǎn)P在y軸左側(cè),點(diǎn)Q 在y軸右側(cè)),連接CP,CQ,若的面積為,求點(diǎn)P,Q的坐標(biāo).
(3)在(2)的條件下,連接AC交PQ于G,在對(duì)稱軸上是否存在一點(diǎn)K,連接GK,將線段GK繞點(diǎn)G逆時(shí)針旋轉(zhuǎn)90°,使點(diǎn)K恰好落在拋物線上,若存在,請(qǐng)直接寫出點(diǎn)K的坐標(biāo)不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合實(shí)踐:
問題情境
數(shù)學(xué)活動(dòng)課上,老師和同學(xué)們?cè)谡叫沃欣眯D(zhuǎn)變換探究線段之間的關(guān)系探究過程如下所示:如圖I,在正方形中,點(diǎn)為邊的中點(diǎn).將以點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針方向旋轉(zhuǎn),當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上時(shí),連接.
“興趣小組”發(fā)現(xiàn)的結(jié)論是:;
“卓越小組”發(fā)現(xiàn)的結(jié)論是:.
解決問題
(1)請(qǐng)你證明“興趣小組”和“卓越小組”發(fā)現(xiàn)的結(jié)論;
拓展探究
證明完“興趣小組”和“卓越小組”發(fā)現(xiàn)的結(jié)論后,“智慧小組”提出如下問題:如圖2,連接,若正方形的邊長為,求出的長度.
(2)請(qǐng)你幫助智慧小組寫出線段的長度.(直接寫出結(jié)論即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com