(2001•金華)如圖,⊙O的弦CD交弦AB于P,AP=4,PB=3,CP=2,那么PD的長(zhǎng)為( )

A.8
B.6
C.4
D.3
【答案】分析:可根據(jù)相交弦定理求解.
解答:解:
∵AP•PB=DP•PC,∴PD=AP•PB÷PC=4×3÷2=6.
故選B.
點(diǎn)評(píng):本題主要考查的是相交弦定理“圓內(nèi)兩弦相交于圓內(nèi)一點(diǎn),各弦被這點(diǎn)所分得的兩線段的長(zhǎng)的乘積相等”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:填空題

(2001•金華)如圖,在梯形ABCD,中,AB∥CD,E,F(xiàn),G,H分別是梯形ABCD各邊AB、BC、CD、DA的中點(diǎn),當(dāng)梯形ABCD滿足條件    時(shí),四邊形EFGH是菱形(填上你認(rèn)為正確的一個(gè)條件即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國(guó)中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(01)(解析版) 題型:解答題

(2001•金華)如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)C為y軸上一動(dòng)點(diǎn),連接AC,過點(diǎn)C作CB⊥AC,交x軸于B.
(1)當(dāng)點(diǎn)B坐標(biāo)為(1,0)時(shí),求點(diǎn)C的坐標(biāo);
(2)如果sinA和cosA是關(guān)于x的一元二次方程x2+ax+b=0的兩個(gè)實(shí)數(shù)根,過原點(diǎn)O作OD⊥AC,垂足為D,且點(diǎn)D的縱坐標(biāo)為a2,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2001•金華)如圖,已知⊙O1,經(jīng)過⊙O2的圓心O2,且與⊙O2相交于A,B兩點(diǎn),點(diǎn)C為弧AO2B上的一動(dòng)點(diǎn)(不運(yùn)動(dòng)至A,B),連接AC,并延長(zhǎng)交⊙O2于點(diǎn)P,連接BP,BC.
(1)先按題意將圖1補(bǔ)完整,然后操作,觀察.圖1供操作觀察用,操作時(shí)可使用量角器與刻度尺.當(dāng)點(diǎn)C在弧AO2B上運(yùn)動(dòng)時(shí),圖中有哪些角的大小沒有變化;
(2)請(qǐng)猜想△BCP的形狀,并證明你的猜想(圖2供證明用);
(3)如圖3,當(dāng)PA經(jīng)過點(diǎn)O2時(shí),AB=4,BP交⊙O1于D,且PB,DB的長(zhǎng)是方程x2+kx+10=0的兩個(gè)根,求⊙O1的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2001•金華)如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)C為y軸上一動(dòng)點(diǎn),連接AC,過點(diǎn)C作CB⊥AC,交x軸于B.
(1)當(dāng)點(diǎn)B坐標(biāo)為(1,0)時(shí),求點(diǎn)C的坐標(biāo);
(2)如果sinA和cosA是關(guān)于x的一元二次方程x2+ax+b=0的兩個(gè)實(shí)數(shù)根,過原點(diǎn)O作OD⊥AC,垂足為D,且點(diǎn)D的縱坐標(biāo)為a2,求b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案