【題目】教育未來指數(shù)是為了評估教育系統(tǒng)在培養(yǎng)學(xué)生如何應(yīng)對快速多變的未來社會方面所呈現(xiàn)的效果.現(xiàn)對教育未來指數(shù)得分前35名的國家和地區(qū)的有關(guān)數(shù)據(jù)進行收集、整理、描述和分析后,給出了部分信息.
a.教育未來指數(shù)得分的頻數(shù)分布直方圖(數(shù)據(jù)分成7組:,,,,,,);
b.教育未來指數(shù)得分在這一組的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5
c.35個國家和地區(qū)的人均國內(nèi)生產(chǎn)總值和教育未來指數(shù)得分情況統(tǒng)計圖如下:
d.中國和中國香港的教育未來指數(shù)得分分別為32.9和68.5.
(以上數(shù)據(jù)來源于《國際統(tǒng)計年鑒(2018)》和國際在線網(wǎng))
根據(jù)以上信息,回答下列問題:
(1)中國香港的教育未來指數(shù)得分排名世界第______;
(2)在35個國家和地區(qū)的人均國內(nèi)生產(chǎn)總值和教育未來指數(shù)得分情況統(tǒng)計圖中,包括中國香港在內(nèi)的少數(shù)幾個國家和地區(qū)所對應(yīng)的點位于虛線l的上方,請在圖中用“○”畫出代表中國香港的點;
(3)在教育未來指數(shù)得分比中國高的國家和地區(qū)中,人均國內(nèi)生產(chǎn)總值的最大值約為_____萬美元;(結(jié)果保留一位小數(shù))
(4)下列推斷合理的是__________.(只填序號即可)
①相較于點所代表的國家和地區(qū),中國的教育未來指數(shù)得分還有一定差距,“十三五”規(guī)劃提出“教育優(yōu)先發(fā)展,教育強則國家強”的任務(wù),進一步提高國家教育水平;
②相較于點所代表的國家和地區(qū),中國的人均國內(nèi)生產(chǎn)總值還有一定差距,中國提出“決勝全面建成小康社會”的奮斗目標(biāo),進一步提高人均國內(nèi)生產(chǎn)總值.
【答案】(1)14; (2)見解析;(3)6.3;(4)①,②.
【解析】
(1)在頻率分布直方圖中,計算70分以上的頻數(shù),將之間的數(shù)據(jù)按照從大到小排列,即可確定;
(2)根據(jù)(1)在圖中畫出即可;
(3)根據(jù)統(tǒng)計圖中提供的人均國內(nèi)生產(chǎn)總值和和教育未來指數(shù)分析即可;
(4)根據(jù)統(tǒng)計圖分析合理即可在.
(1)由條形統(tǒng)計圖可知:的國家數(shù)為:8+5=13
在這一組中,將數(shù)據(jù)按照從大到小排列,68.5排在第一位,故香港位于第14位
故答案為:14.
(2)補充如圖所示:
(3)根據(jù)統(tǒng)計圖中提供的人均國內(nèi)生產(chǎn)總值和和教育未來指數(shù)分析,得人均國內(nèi)生產(chǎn)總值的最大值約為6.3萬美元.
故答案為:6.3.
(4)根據(jù)統(tǒng)計圖中提供的人均國內(nèi)生產(chǎn)總值和和教育未來指數(shù)
①相較于點所代表的國家和地區(qū),中國的教育未來指數(shù)得分還有一定差距,“十三五”規(guī)劃提出“教育優(yōu)先發(fā)展,教育強則國家強”的任務(wù),進一步提高國家教育水平;合理.
②相較于點所代表的國家和地區(qū),中國的人均國內(nèi)生產(chǎn)總值還有一定差距,中國提出“決勝全面建成小康社會”的奮斗目標(biāo),進一步提高人均國內(nèi)生產(chǎn)總值;合理.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點和圖形,給出如下定義:若圖形上存在兩個點,使得是邊長為2的等邊三角形,則稱點是圖形的一個“和諧點”.
已知直線與軸交于點,與軸交于點的半徑為.
(1)若,在點中,直線的和諧點是___________;
(2)若上恰好存在2個直線的和諧點,求的取值范圍;
(3)若,線段上存在的和諧點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣州融創(chuàng)樂園是國內(nèi)首個以南越文化、嶺南風(fēng)格為主題的游樂園,自2019年6月開園以來受到了國內(nèi)外游客的熱捧.某旅游團組織一批游客游玩了樂園內(nèi)的四個網(wǎng)紅項目,“A.雙龍飛舞”、“B.飛躍廣東”、“C.云霄塔”、“D.怒海狂濤”,并進行了“我最喜歡的一個項目”的投票評選活動,投票結(jié)果繪制成以下兩幅尚未完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答下列問題:
(1)參與投票的游客總?cè)藬?shù)為 人;
(2)扇形統(tǒng)計圖中B所對的圓心角度數(shù)為 度,并補全條形統(tǒng)計圖;
(3)從投票給“雙龍飛舞“的3名男生和1名女生中隨機抽取2名了解情況,請你用列舉法求恰好抽到1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+b與x、y軸的正半軸交于點A,B,與雙曲線y=﹣交于點C(點C在第二象限內(nèi)),點D,過點C作CE⊥x軸于點E,記四邊形OBCE的面積為S1,△OBD的面積為S2,若=,則b的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P為BA延長線上一點,點C在⊙O上,連接PC,D為半徑OA上一點,PD=PC,連接CD并延長交⊙O于點E,且E是的中點.
(1)求證:PC是⊙O的切線;
(2)求證:CDDE=2ODPD;
(3)若AB=8,CDDE=15,求PA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果
下面有三個推斷:
①當(dāng)拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;
③若再次用計算機模擬此實驗,則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點C為線段上一點,以為斜邊作等腰,連接,在外側(cè),以為斜邊作等腰,連接.
(1)如圖1,當(dāng)時:
①求證:;
②判斷線段與的數(shù)量關(guān)系,并證明;
(2)如圖2,當(dāng)時,與的數(shù)量關(guān)系是否保持不變?
對于以上問題,小牧同學(xué)通過觀察、實驗,形成了解決該問題的幾種思路:
想法1:嘗試將點D為旋轉(zhuǎn)中心,過點D作線段垂線,交延長線于點G,連接;通過證明解決以上問題;
想法2:嘗試將點D為旋轉(zhuǎn)中心,過點D作線段垂線,垂足為點G,連接.通過證明解決以上問題;
想法3:嘗試?yán)盟狞c共圓,過點D作垂線段,連接,通過證明D、F、B、E四點共圓,利用圓的相關(guān)知識解決以上問題.
請你參考上面的想法,證明(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P在y軸的正半軸上,⊙P交x軸于B、C兩點,交y軸于點A,以AC為直角邊作等腰Rt△ACD,連接BD分別交y軸和AC于E、F兩點,連接AB.
(1)求證:AB=AD;
(2)若BF=4,DF=6,求線段CD的長;
(3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時,的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com