如圖,P為正方形ABCD的邊BC上的點,BP=3PC,Q是CD中點.
(1)求證:△ADQ∽△QCP;
(2)在現(xiàn)在的條件下,請再寫出一個正確結(jié)論.
分析:(1)根據(jù)BP=3PC求出BC=4PC,然后利用兩邊對應(yīng)成比例,夾角相等,兩三角形相似證明即可;
(2)根據(jù)相似三角形對應(yīng)角相等寫出結(jié)論.
解答:(1)證明:∵BP=3PC,
∴BC=BP+PC=4PC,
∵Q是CD中點,
∴CQ=DQ=
1
2
CD=
1
2
BC,
AD
CQ
=
DQ
CP
=2,
又∵∠C=∠D=90°,
∴△ADQ∽△QCP;

(2)解:∵△ADQ∽△QCP,
∴∠DAQ=∠CQP,∠AQD=∠QPC,
也可得到∠AQP=90°.
所以,正確的結(jié)論可以是∠DAQ=∠CQP或∠AQD=∠QPC或∠AQP=90°(答案不唯一).
點評:本題考查了相似三角形的判定與性質(zhì),正方形的性質(zhì),求出對應(yīng)邊的比值相等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,E為正方形ABCD的邊AB上一點(不含A、B點),F(xiàn)為BC邊的延長線上一點,△DAE旋轉(zhuǎn)后能與△DCF重合.
(1)旋轉(zhuǎn)中心是哪一點?
(2)旋轉(zhuǎn)了多少度?
(3)如果連接EF,那么△DEF是怎樣的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,A(0,3),B(1,0),直線OP交AB于N,DC于M,點H從原點O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運動,同時,點R從O出發(fā)沿精英家教網(wǎng)OM方向以
2
個單位每秒速度運動,運動時間為t.求:
(1)C的坐標(biāo)為
 
;
(2)當(dāng)t為何值時,△ANO與△DMR相似?
(3)△HCR面積S與t的函數(shù)關(guān)系式;并求以A、B、C、R為頂點的四邊形是梯形時t的值及S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,G為正方形ABCD的對稱中心,A(0,2),B(1,0),直線OG交AB于E,DC于F,點Q從A出發(fā)沿A→B→C的方向以
5
個單位每秒速度運動,同時,點P從O出發(fā)沿OF方精英家教網(wǎng)向以
2
個單位每秒速度運動,Q點到達終點,點P停止運動,運動時間為t.求:
(1)求G點的坐標(biāo).
(2)當(dāng)t為何值時,△AEO與△DFP相似?
(3)求△QCP面積S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,正方形ABCD的邊長為
10
,tan∠ABO=3,直線OP交AB于N,DC于M,點H從原點O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運動,同時,點R從O出發(fā)沿OM方向以
2
個單位每秒速度運動,運動時間為t,求:
(1)直接寫出A、D、P的坐標(biāo);
(2)求△HCR面積S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時,△ANO與△DMR相似?
(4)求以A、B、C、R為頂點的四邊形是梯形時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)如圖,O為正方形ABCD對角線AC上一點,以O(shè)為圓心,OA長為半徑的⊙0與BC相切于點M,與AB、AD分別相交于點E、F.
(1)求證:CD與⊙0相切;
(2)若⊙0的半徑為
2
,求正方形ABCD的邊長.

查看答案和解析>>

同步練習(xí)冊答案