【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再從剩下的卡片中隨機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
【答案】(1);(2)淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.
【解析】試題分析:
(1)根據(jù)等可能事件的概率的定義,分別確定總的可能性和是勾股數(shù)的情況的個(gè)數(shù);
(2)用列表法列舉出所有的情況和兩張卡片上的數(shù)都是勾股數(shù)的情況即可.
試題解析:
(1)嘉嘉隨機(jī)抽取一張卡片共出現(xiàn)4種等可能結(jié)果,其中抽到的卡片上的數(shù)是勾股數(shù)的結(jié)果有3種,所以嘉嘉抽取一張卡片上的數(shù)是勾股數(shù)的概率P1=;
(2)列表法:
A | B | C | D | |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
由列表可知,兩次抽取卡片的所有可能出現(xiàn)的結(jié)果有12種,其中抽到的兩張卡片上的數(shù)都是勾股數(shù)的有6種,
∴P2=,
∵P1=,P2=,P1≠P2
∴淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列內(nèi)容,并答題:我們知道,計(jì)算n邊形的對(duì)角線條數(shù)公式為: n(n﹣3).
如果一個(gè)n邊形共有20條對(duì)角線,那么可以得到方程n(n﹣3)=20 .
整理得n2﹣3n﹣40=0;解得n=8或n=﹣5
∵n為大于等于3的整數(shù),∴n=﹣5不合題意,舍去.
∴n=8,即多邊形是八邊形.
根據(jù)以上內(nèi)容,問:
(1)若一個(gè)多邊形共有14條對(duì)角線,求這個(gè)多邊形的邊數(shù);
(2)A同學(xué)說:“我求得一個(gè)多邊形共有10條對(duì)角線”,你認(rèn)為A同學(xué)說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明用12元買軟面筆記本,小麗用21元買硬面筆記本.
(1)已知每本硬面筆記本比軟面筆記本貴1.2元,小明和小麗能買到相同數(shù)量的筆記本嗎?
(2)已知每本硬面筆記本比軟面筆記本貴a元,是否存在正整數(shù)a,使得每本硬面筆記本、軟面筆記本的價(jià)格都是正整數(shù),并且小明和小麗能買到相同數(shù)量的筆記本?若存在,求出a的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ACB,∠ACB=90°,AC=BC,點(diǎn)A、C分別在x軸、y軸的正半軸上.
(1)如圖1,求證:∠BCO=∠CAO
(2)如圖2,若OA=5,OC=2,求B點(diǎn)的坐標(biāo)
(3)如圖3,點(diǎn)C(0,3),Q、A兩點(diǎn)均在x軸上,且S△CQA=18.分別以AC、CQ為腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,連接MN交y軸于P點(diǎn),OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長;
(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對(duì)應(yīng)),求點(diǎn)M的坐標(biāo);
②若⊙M的半徑為,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對(duì)稱軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)平行于x軸的一條直線交拋物線于M,N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).如圖,四邊形ABCD都是平行四邊形,AD∥BC,AB∥CD,設(shè)它的面積為S.
(1)如圖①,點(diǎn)M為AD上任意一點(diǎn),若△BCM的面積為S1,則S1:S= ;
(2)如圖②,點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn)時(shí),記△PAB的面積為Sˊ,△PCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得Sˊ、S〞的和與S的數(shù)量關(guān)系式為 ;
(3)如圖③,已知點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn),△PAB的面積為3,△PBC的面積為7,求△PBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
“ a 2 ≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式.例如:
x2 4x 5 x2 4x 4 1 x 22 1 ,
∵ x 22 ≥0,
∴ x 22 1 ≥1,
∴ x2 4x 5 ≥1.
試?yán)?/span>“配方法”解決下列問題:
(1)填空: x2 4x 5 ( x )2+ ;
(2)已知 x2 4x y2 2y 5 0 ,求 x y 的值;
(3)比較代數(shù)式 x2 1與2x 3 的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A.一組對(duì)角相等,一組鄰角相等的四邊形是平行四邊形
B.一組對(duì)邊平行,一組對(duì)角相等的四邊形是平行四邊形
C.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形
D.一組對(duì)邊相等,一組對(duì)角相等的四邊形是平行四邊形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com