如圖,對面積為1的平行四邊形ABCD逐次進行以下操作:第一次操作,分別延長AB,BC,CD,DA至點A1,B1,C1,D1,使得A1B=2AB,B1C=2BC,C1D=2CD,D1A=2AD,順次連接A1,B1,C1,D1,得到平行四邊形A1B1C1D1,記其面積為S1;第二次操作,分別延長A1B1,B1C1,C1D1、D1A1至點A2,B2,C2,D2,使得A2B1=2A1B1,B2C1=2B1C1,C2D1=2C1D1,D2A1=2A1D1,順次連接A2,B2,C2,D2記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到平行四邊形A5B5C5D5,則其面積S5=________.

135
分析:根據(jù)題意分析可得:平行四邊形ABCD的面積為1;每次操作后,每個三角形面積都是原平行四邊形面積的3倍,所以新的平行四邊形的面積就是原來平行四邊形的13倍;按此規(guī)律繼續(xù)下去,可得到平行四邊形A5B5C5D5,則其面積S5=135
解答:解:如圖,連接BD,B1D,
∵B1C=2BC,
∴△B1DC的面積是△DBC的面積的兩倍,
又∵C1D=2DC,△B1C1D的面積是△B1DC的兩倍,
∴△B1C1C的面積是△DBC的面積的6倍,
也就是平行四邊形ABCD的面積的三倍,
以此類推,其余三個三角形的面積都是平行四邊形面積的三倍,
∴新的平行四邊形的面積是原來平行四邊形面積的13倍,
按此規(guī)律繼續(xù)下去,那么平行四邊形A5B5C5D5的面積是135
故填空答案135
點評:本題是一道找規(guī)律的題目,這類題型在中考中經常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•新區(qū)二模)在圖形的全等變換中,有旋轉變換,翻折(軸對稱)變換和平移變換.一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.
(1)第一小組的同學發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經過一種變換得到,請你寫出這種變換的過程
將△ABC繞點O旋轉180°后可得到△ADC
將△ABC繞點O旋轉180°后可得到△ADC


(2)第二小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學,在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構成一個新三角形,已知這個新三角形面積小于15
15
,請你幫助該小組求出a可能的最大整數(shù)值.

(4)探究活動結束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請利用圖形變換探究S△AOB′+S△BOC′+S△COA′
3
的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.

1.第一小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖1);再沿GC折疊,使點B落在EF上的點B'處(如圖2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.

2.第二小組的同學,在一個矩形紙片上按照圖3的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖4.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構成一個新三角形,已知這個新三角形面積小于15,請你幫助該小組求出a可能的最大整數(shù)值.

3.探究活動結束后,老師給大家留下了一道探究題:如圖5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關系.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.
【小題1】第一小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖1);再沿GC折疊,使點B落在EF上的點B'處(如圖2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.

【小題2】第二小組的同學,在一個矩形紙片上按照圖3的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖4.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構成一個新三角形,已知這個新三角形面積小于15,請你幫助該小組求出a可能的最大整數(shù)值.

【小題3】探究活動結束后,老師給大家留下了一道探究題:如圖5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇江陰南菁中學九年級中考適應性訓練數(shù)學試卷(帶解析) 題型:解答題

在一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.
【小題1】第一小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖1);再沿GC折疊,使點B落在EF上的點B'處(如圖2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.

【小題2】第二小組的同學,在一個矩形紙片上按照圖3的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖4.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構成一個新三角形,已知這個新三角形面積小于15,請你幫助該小組求出a可能的最大整數(shù)值.

【小題3】探究活動結束后,老師給大家留下了一道探究題:如圖5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省江陰市九年級5月中考適應性訓練(二模)數(shù)學試卷(解析版) 題型:解答題

在一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.

(1)第一小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖1);再沿GC折疊,使點B落在EF上的點B'處(如圖2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.

(2)第二小組的同學,在一個矩形紙片上按照圖3的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖4.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構成一個新三角形,已知這個新三角形面積小于15,請你幫助該小組求出a可能的最大整數(shù)值.

(3)探究活動結束后,老師給大家留下了一道探究題:

如圖5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,

請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關系.

 

查看答案和解析>>

同步練習冊答案