【題目】“成自”高鐵自貢仙市段在建設(shè)時(shí),甲、乙兩個(gè)工程隊(duì)計(jì)劃參與該項(xiàng)工程建設(shè),甲隊(duì)單獨(dú)施工30天完成該項(xiàng)工程的,這時(shí)乙隊(duì)加入,兩隊(duì)還需同時(shí)施工30天,才能完成該項(xiàng)工程.

(1)若乙隊(duì)單獨(dú)施工,需要多少天才能完成該項(xiàng)工程?

(2)若甲隊(duì)參與該項(xiàng)工程施工的時(shí)間不超過40天,則乙隊(duì)至少施工多少天才能完成該項(xiàng)工程?

【答案】(1)乙隊(duì)單獨(dú)施工要60天完成該項(xiàng)工程(2)甲隊(duì)施工不超過40,乙隊(duì)至少施工40天才能完成該項(xiàng)工程

【解析】試題分析:1)直接利用隊(duì)單獨(dú)施工30天完成該項(xiàng)工程的,這時(shí)乙隊(duì)加入,兩隊(duì)還需同時(shí)施工30天,進(jìn)而利用總工作量為1得出等式求出答案;
2)直接利用甲隊(duì)參與該項(xiàng)工程施工的時(shí)間不超過40天,得出不等式求出答案.

試題解析:(1)設(shè)乙隊(duì)單獨(dú)施工要天完成該項(xiàng)工程,則乙隊(duì)的工作效率是.

由題意有:

解得: .

經(jīng)檢驗(yàn) 是原方程的解且符合題意.

設(shè)乙隊(duì)至少施工天才能完成.

由題意有: ,

解得: .

答:乙隊(duì)單做需60天完成該項(xiàng)工程;甲隊(duì)施工不超過40,乙隊(duì)至少施工40天才能完成該項(xiàng)工程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC為等邊三角形,PBC上一點(diǎn),QAC上一點(diǎn),AQ=PQ,PR=PSPR⊥ABRPS⊥ACS,則對(duì)下面四個(gè)結(jié)論判斷正確的是(

①點(diǎn)P在∠BAC的平分線上, ②AS=AR③QP∥AR, ④△BRP≌△QSP.

A. 全部正確; B. 僅①和②正確; C. 僅②③正確; D. 僅①和③正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)M,AOM的面積為3.

(1)求反比例函數(shù)的解析式;

(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個(gè)頂點(diǎn)在反比例函數(shù)的圖象上,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅1、紅2),1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球攪勻.

(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是

(2)先從中任意摸出一個(gè)球,再?gòu)挠嘞碌?/span>3個(gè)球中任意摸出1個(gè)球,請(qǐng)用畫樹狀圖或列表法求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班學(xué)生參加公民道德知識(shí)競(jìng)賽,將競(jìng)賽所取得的成績(jī)(得分取整數(shù))進(jìn)行整理后分成5組,并繪制成頻率分布直方圖,如下圖所示,請(qǐng)結(jié)合直方圖提供的信息,回答下列問

(1)該班共有多少名學(xué)生?

(2)60.5~70.5這一分?jǐn)?shù)段的頻數(shù)、頻率分別是多少?

(3)根據(jù)統(tǒng)計(jì)圖,提出一個(gè)問,并回答你所提出的問

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)B作BMx軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入長(zhǎng)方形內(nèi)得到的,∠BAC=90°,AB=6,AC=8,點(diǎn)D,E,F(xiàn),G,H,I都在長(zhǎng)方形KLMJ的邊上,則長(zhǎng)方形KLMJ的面積為(

A. 360 B. 400 C. 440 D. 484

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象交于Aa,-2),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);

2P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)Py軸的平行線,交直線AB于點(diǎn)C,連接PO,若POC的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠BAC與∠CBE的平分線相交于點(diǎn)P,BE=BC,PB與CE交于點(diǎn)H,PG∥AD交BC于F,交AB于G,下列結(jié)論:①GA=GP;②∠DCP=45°;③BP垂直平分CE;④GF+ FC =GA;其中正確的判斷有______________.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案