【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1 , A2 , A3…都在x軸上,點(diǎn)B1 , B2 , B3…都在直線y=x上,△OA1B1 , △B1A1A2 , △B2B1A2 , △B2A2A3 , △B3B2A3…都是等腰直角三角形,且OA1=1,則點(diǎn)B2015的坐標(biāo)是( 。
A.(22014 , 22014)
B.(22015 , 22015)
C.(22014 , 22015)
D.(22015 , 22014)
【答案】A
【解析】解:∵OA1=1,
∴點(diǎn)A1的坐標(biāo)為(1,0),
∵△OA1B1是等腰直角三角形,
∴A1B1=1,
∴B1(1,1),
∵△B1A1A2是等腰直角三角形,
∴A1A2=1,B1A2=,
∵△B2B1A2為等腰直角三角形,
∴A2A3=2,
∴B2(2,2),
同理可得,B3(22 , 22),B4(23 , 23),…Bn(2n﹣1 , 2n﹣1),
∴點(diǎn)B2015的坐標(biāo)是(22014 , 22014).
故選:A.
根據(jù)OA1=1,可得點(diǎn)A1的坐標(biāo)為(1,0),然后根據(jù)△OA1B1 , △B1A1A2 , △B2B1A2 , △B2A2A3 , △B3B2A3…都是等腰直角三角形,求出A1A2 , B1A2 , A2A3 , B2A3…的長(zhǎng)度,然后找出規(guī)律,求出點(diǎn)B2015的坐標(biāo).
【考點(diǎn)精析】本題主要考查了等腰直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,兩條中線BE,CD相交于點(diǎn)O,則S△DOE:S△DCE=( )
A.1:4
B.1:3
C.1:2
D.2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),請(qǐng)解決下列問題.
(1)填空:點(diǎn)C的坐標(biāo)為 點(diǎn)D的坐標(biāo)為 ;
(2)設(shè)點(diǎn)P的坐標(biāo)為(a,0),當(dāng)|PD﹣PC|最大時(shí),求α的值并在圖中標(biāo)出點(diǎn)P的位置;
(3)在(2)的條件下,將△BCP沿x軸的正方向平移得到△B′C′P′,設(shè)點(diǎn)C對(duì)應(yīng)點(diǎn)C′的橫坐標(biāo)為t(其中0<t<6),在運(yùn)動(dòng)過程中△B′C′P′與△BCD重疊部分的面積為S,求S與t之間的關(guān)系式,并直接寫出當(dāng)t為何值時(shí)S最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)E,F(xiàn)分別是邊AB,AC的中點(diǎn),點(diǎn)D在邊BC上.若DE=DF,AD=2,BC=6,求四邊形AEDF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB°,AB=5,BC=3,P是AB邊上的動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BCP沿CP所在的直線翻折,得到△B′CP,連接B′A,則B′A長(zhǎng)度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C,D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠B.
(1)求證:直線AE是⊙O的切線
(2)若∠D=60°,AB=6時(shí),求劣弧的長(zhǎng)(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)正是閩北特產(chǎn)楊梅熱銷的季節(jié),某水果零售商店分兩批次從批發(fā)市場(chǎng)共購(gòu)進(jìn)楊梅40箱,已知第一、二次進(jìn)貨價(jià)分別為每箱50元、40元,且第二次比第一次多付款700元.
(1)設(shè)第一、二次購(gòu)進(jìn)楊梅的箱數(shù)分別為a箱、b箱,求a,b的值;
(2)若商店對(duì)這40箱楊梅先按每箱60元銷售了x箱,其余的按每箱35元全部售完.
①求商店銷售完全部楊梅所獲利潤(rùn)y(元)與x(箱)之間的函數(shù)關(guān)系式;
②當(dāng)x的值至少為多少時(shí),商店才不會(huì)虧本.
(注:按整箱出售,利潤(rùn)=銷售總收入﹣進(jìn)貨總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2.則 cos∠MCN= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到了“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com