【題目】如圖,點(diǎn)B,F,C,E在一條直線上BF=CE,AC=DF.
(1)在下列條件 ①∠B=∠E;②∠ACB=∠DFE;③AB=DE;④AC∥DF中,只添加一個(gè)條件就可以證得△ABC≌△DEF,則所有正確條件的序號(hào)是 .
(2)根據(jù)已知及(1)中添加的一個(gè)條件證明∠A=∠D.
【答案】(1)②③④;(2)添加條件∠ACB=∠DFE,理由詳見解析.
【解析】
(1)由全等三角形的判定方法即可得出答案;
(2)答案不唯一,添加條件∠ACB=∠DFE,證明△ABC≌△DEF(SAS);即可得出∠A=∠D.
解:(1)①在△ABC和△DEF中,BC=EF,AC=DF,∠B=∠E,
不能判定△ABC和△DEF全等;
②∵BF=CE,
∴BF+CF=CE+CF,
即BC=EF,
在△ABC和△DEF中,,
∴△ABC≌△DEF(SAS);
③在△ABC和△DEF中,,
∴△ABC≌△DEF(SSS);
④∵AC∥DF,
∴∠ACB=∠DFE,
在△ABC和△DEF中,,
∴△ABC≌△DEF(SAS);
故答案為:②③④;
(2)答案不惟一.添加條件∠ACB=∠DFE,理由如下:
∵BF=EC,
∴BF+CF=EC+CF.
∴BC=EF.
在△ABC和△DEF中,,
∴△ABC≌△DEF(SAS);
∴∠A=∠D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組
(1)請(qǐng)直接寫出方程的所有正整數(shù)解
(2)若方程組的解滿足x+y=0,求m的值
(3)無論實(shí)數(shù)m取何值,方程x-2y+mx+5=0總有一個(gè)固定的解,請(qǐng)直接寫出這個(gè)解?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若A、B、C為數(shù)軸上三點(diǎn),若點(diǎn)C到A的距離是點(diǎn)C到B的距離2倍,我們就稱點(diǎn)C是(A,B)的好點(diǎn).例如,如圖1,點(diǎn)A表示的數(shù)為﹣1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是(A,B)的好點(diǎn);又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D就不是(A,B)的好點(diǎn),但點(diǎn)D是(B,A)的好點(diǎn).
知識(shí)運(yùn)用:如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣2,點(diǎn)N所表示的數(shù)為4.
(1)數(shù) 所表示的點(diǎn)是(M,N)的好點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣20,點(diǎn)B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以2個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.當(dāng)t為何值時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江南農(nóng)場(chǎng)收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.
(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?
(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過5400元,有幾種方案?請(qǐng)指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).
(1)求此拋物線的解析式;
(2)當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC的頂點(diǎn)都在網(wǎng)格線的交點(diǎn)上,點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為(2,0),點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為(﹣1,﹣2).
(1)根據(jù)上述條件,在網(wǎng)格中建立平面直角坐標(biāo)系xOy;
(2)畫出△ABC分別關(guān)于y軸的對(duì)稱圖形△A1B1C1;
(3)寫出點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,△ADC與△ABC關(guān)于直線AC對(duì)稱,AE與CD垂直交BC的延長(zhǎng)線于點(diǎn)E,∠EAF=45°,且AF與AB在AE的兩側(cè),EF⊥AF.
(1)依題意補(bǔ)全圖形.
(2)①在AE上找一點(diǎn)P,使點(diǎn)P到點(diǎn)B,點(diǎn)C的距離和最短;
②求證:點(diǎn)D到AF,EF的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ;
(2)|5﹣3|表示5與3之差的絕對(duì)值,實(shí)際上也可理解為5與3兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;
(4)動(dòng)點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com