已知:如圖,ABE≌△ACD,B=C,則∠AEB=_______,AE=________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,E是AD上一點(diǎn),EC∥AB,EB∥CD,若S△DEC=1,S△ABE=3,則S△BCE=
 
;若S△DEC=S1,S△ABE=S2,S△BCE=S,請直接寫出S與S1、S2間的關(guān)系式:
 

(2)如圖2,△ABC、△DCE、△GEF都是等邊三角形,且A、D、G在同一直線上,B、C、E、F也在同一直線上,S△ABC=4,S△DCE=9,試?yán)茫?)中的結(jié)論得△GEF的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點(diǎn),且BE=DF.
求證:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,梯形ABCD中,AD∥BC,點(diǎn)E是BC邊中點(diǎn),AE=DE.
(1)求證:△ABE≌△DCE;
(2)若AB=AE,四邊形ABED是平行四邊形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是⊙O的直徑,點(diǎn)P是AB延長線上一點(diǎn),PC切⊙O于點(diǎn)C,在射線精英家教網(wǎng)PA上截取PD=PC,連接CD,并延長交⊙O于點(diǎn)E.
(1)求證:∠ABE=∠BCE;
(2)當(dāng)點(diǎn)P在AB的延長線上運(yùn)動時(shí),判斷sin∠BCE的值是否隨點(diǎn)P位置的變化而變化,提出你的猜想并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

根據(jù)所給的基本材料,請你進(jìn)行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個(gè)問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動,速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動,速度為2cm/s;連接PQ,設(shè)運(yùn)動的時(shí)間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長和面積同時(shí)平分?若存在,求出此時(shí)t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

同步練習(xí)冊答案