【題目】如圖,ABCD中,M、N是BD的三等分點(diǎn),連接CM并延長交AB于點(diǎn)E,連接EN并延長交CD于點(diǎn)F,以下結(jié)論:
①E為AB的中點(diǎn);
②FC=4DF;
③S△ECF=;
④當(dāng)CE⊥BD時(shí),△DFN是等腰三角形.
其中一定正確的是_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線AB和CD相交于點(diǎn)O,OM平分∠BOD,∠MON=90°,∠AOC=50°.
(1)求∠AON的度數(shù).
(2)寫出∠DON的余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有一塊等腰三角形紙板,在它的兩腰上各有一點(diǎn)E和F,把這兩點(diǎn)分別與底邊中點(diǎn)連結(jié),并沿著這兩條線段剪下兩個(gè)三角形,所得的這兩個(gè)三角形相似,剩余部分(四邊形)的四條邊的長度如圖所示,那么原等腰三角形的底邊長為( )
A. B. C. 或 D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB過x軸上一點(diǎn)A(2,0),且與拋物線y=ax2相交于B、C兩點(diǎn),B點(diǎn)坐標(biāo)為(1,1).
(1)求直線AB的解析式及拋物線y=ax2的解析式;
(2)求點(diǎn)C的坐標(biāo);
(3)求S△COB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將下列證明過程補(bǔ)充完整:
已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求證:AB∥CD.
證明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性質(zhì))
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x+1的圖象與x軸、y軸分別交于A、B兩點(diǎn),將這條直線進(jìn)行平移后交x軸、y軸分別交于C、D,要使A、B、C、D圍成的四邊形面積為4,則直線CD的解析式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點(diǎn)A(1,3).
(1)試確定此反比例函數(shù)的解析式;
(2)當(dāng)=2時(shí), 求y的值;
(3)當(dāng)自變量從5增大到8時(shí),函數(shù)值y是怎樣變化的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求完成作圖:
(1)作出△ABC關(guān)于x軸對稱的圖形;
(2)寫出A、B、C的對應(yīng)點(diǎn)A′、B′、C′的坐標(biāo);
(3)直接寫出△ABC的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點(diǎn)A(2,0)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針方向以1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針方向以2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2018次相遇地點(diǎn)的坐標(biāo)是( )
A. (1,﹣1) B. (2,0) C. (﹣1,1) D. (﹣1,﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com