【題目】如圖,在等邊△ABC中,點(diǎn)D 是邊CB延長(zhǎng)線上一動(dòng)點(diǎn)(BD<BC),連接AD,點(diǎn)B 關(guān)于直線AD的對(duì)稱點(diǎn)為E,過(guò)D 作DF//AB交CE于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)求證:AD=CF;
(3)當(dāng)∠DCE=15°時(shí),直接寫(xiě)出線段AD,EF,BC之間的數(shù)量關(guān)系.
【答案】(1)見(jiàn)詳解;(2)見(jiàn)詳解;(3)EF+AD=BC,理由見(jiàn)詳解
【解析】
(1)依據(jù)題意畫(huà)出相應(yīng)圖形即可;
(2)連接FB,先DE=DF,再證等邊三角形DFB,最后通過(guò)證△DBA≌△FBC即可得證;
(3)先證△AEC為等腰直角三角形,再利用勾股定理即可得到AD,EF,BC之間的數(shù)量關(guān)系.
(1)解:如圖即為所求,
(2)證明:如圖,連接FB,
∵點(diǎn)E、點(diǎn)B關(guān)于AD對(duì)稱,
∴△ADE≌△ADB,
∴∠AED=∠ABD,AE=AB,
∵△ABC為等邊三角形,
∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,
∴AE=AC,
∴∠AEC=∠ACE,
∵∠AED=∠ABD,
∴∠AEC+∠DEF=∠BAC+∠ACE+∠DCF,
∴∠DEF=∠BAC+∠DCF=60°+∠DCF,
∵DF∥AB,
∴∠FDB=∠ABC=60°,
∴∠DFE=∠FDB+∠DCF=60°+∠DCF,
∴∠DFE=∠DEF,
∴DE=DF,
∴DB=DF,
又∵∠FDB=60°,
∴△BDF為等邊三角形,
∴∠DBF=∠ABC=60°,DB=FB,
∴∠DBA=∠FBC=120°,
在△DBA與△FBC中,
∴△DBA≌△FBC(SAS)
∴AD=CF.
(3)解:∠ACB=60°,∠DCE=15°,
∴∠AEC=∠ACE=45°
∴∠EAC=90°,
在Rt△ACE中,AE2+AC2=EC2,
∴EC2=2AC2,
∴EC=AC,
即EF+FC=AC,
又∵FC=AD,AC=BC,
∴EF+AD=BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,點(diǎn)E是邊BC的中點(diǎn).
(1)、求證:BC 2=BDBA;
(2)、判斷DE與⊙O位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,CD為高,BC=nAC
(1)如圖1,當(dāng)n=時(shí),則的值為 ;(直接寫(xiě)出結(jié)果)
(2)如圖2,點(diǎn)P是BC的中點(diǎn),過(guò)點(diǎn)P作PF⊥AP交AB于F,求的值;(用含n的代數(shù)式表示)
(3)在(2)的條件下,若PF=BF,則n= .(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)過(guò)點(diǎn)E(8,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C、D在拋物線上,∠BAD的平分線AM交BC于點(diǎn)M,點(diǎn)N是CD的中點(diǎn),已知OA=2,且OA:AD=1:3.
(1)求拋物線的解析式;
(2)F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長(zhǎng)的最小值;
(3)在x軸下方且在拋物線上是否存在點(diǎn)P,使△ODP中OD邊上的高為?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)矩形ABCD不動(dòng),將拋物線向右平移,當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)K、L,且直線KL平分矩形的面積時(shí),求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視舉辦的《主持人大賽》受到廣泛的關(guān)注.某中學(xué)學(xué)生會(huì)就《主持人大賽》節(jié)目的喜愛(ài)程度,在校內(nèi)對(duì)部分學(xué)生進(jìn)行了問(wèn)卷調(diào)查,并對(duì)問(wèn)卷調(diào)查的結(jié)果分為“非常喜歡”、“比較喜歡”、“感覺(jué)一般”、“不太喜歡”四個(gè)等級(jí),分別記作、、、.根據(jù)調(diào)查結(jié)果繪制出如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)本次被調(diào)查對(duì)象共有 人;扇形統(tǒng)計(jì)圖中被調(diào)查者“比較喜歡”等級(jí)所對(duì)應(yīng)圓心角的度數(shù)為 .
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并標(biāo)明數(shù)據(jù);
(3)若選“不太喜歡”的人中有兩個(gè)女生和兩個(gè)男生,從選“不太喜歡”的人中挑選兩個(gè)學(xué)生了解不太喜歡的原因,請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表),求所選取的這兩名學(xué)生恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰直角和等腰直角分別在直線上.
(1)如圖所示,分別在線段上,若,求證:.
(2)若分別在線段外(還在直線上),根據(jù)題意,畫(huà)出圖形,那么(1)的結(jié)論是否依然成立,若成立,寫(xiě)出證明過(guò)程;若不成立,說(shuō)明原因;
(3)如圖,若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中記載:“今有甲乙二人持錢(qián)不知其數(shù),甲得乙半而錢(qián)五十,乙得甲太半而錢(qián)亦五十.問(wèn)甲、乙持錢(qián)各幾何?”譯文:“今有甲乙二人,不知其錢(qián)包里有多少錢(qián).若乙把自己一半的錢(qián)給甲,則甲的錢(qián)數(shù)為50錢(qián);而甲把自己的錢(qián)給乙,則乙的錢(qián)數(shù)也為50錢(qián).問(wèn)甲、乙各有多少錢(qián)?”設(shè)甲、乙原有錢(qián)數(shù)分別為、,下列所列方程組正確的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以直線為對(duì)稱軸的拋物線與直線交于,兩點(diǎn),與軸交于,直線與軸交于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)直線與拋物線的對(duì)稱軸的交點(diǎn)為,是拋物線上位于對(duì)稱軸右側(cè)的一點(diǎn),若,且與的面積相等,求點(diǎn)的坐標(biāo);
(3)若在軸上有且只有一點(diǎn),使,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com