【題目】如圖,在等邊△ABC中,點(diǎn)D 是邊CB延長(zhǎng)線上一動(dòng)點(diǎn)(BD<BC),連接AD,點(diǎn)B 關(guān)于直線AD的對(duì)稱點(diǎn)為E,過(guò)D DF//ABCE于點(diǎn)F

1)依題意補(bǔ)全圖形;

2)求證:AD=CF

3)當(dāng)∠DCE=15°時(shí),直接寫(xiě)出線段AD,EFBC之間的數(shù)量關(guān)系.

【答案】1)見(jiàn)詳解;(2)見(jiàn)詳解;(3EF+AD=BC,理由見(jiàn)詳解

【解析】

1)依據(jù)題意畫(huà)出相應(yīng)圖形即可;

2)連接FB,先DEDF,再證等邊三角形DFB,最后通過(guò)證△DBA△FBC即可得證;

3)先證△AEC為等腰直角三角形,再利用勾股定理即可得到AD,EF,BC之間的數(shù)量關(guān)系.

1)解:如圖即為所求,

2)證明:如圖,連接FB

∵點(diǎn)E、點(diǎn)B關(guān)于AD對(duì)稱,

△ADE≌△ADB

∠AED∠ABD,AEAB

∵△ABC為等邊三角形,

∴ABACBC,∠ABC∠ACB∠BAC60°,

∴AEAC,

∴∠AEC∠ACE

∵∠AED∠ABD,

∴∠AEC∠DEF∠BAC∠ACE∠DCF

∴∠DEF∠BAC∠DCF60°∠DCF,

∵DF∥AB

∠FDB∠ABC60°,

∠DFE∠FDB∠DCF60°∠DCF

∠DFE∠DEF,

DEDF,

DBDF,

∵∠FDB60°,

∴△BDF為等邊三角形,

∠DBF∠ABC60°,DBFB,

∠DBA∠FBC120°

△DBA△FBC中,

△DBA△FBCSAS

ADCF

3)解:∠ACB60°,∠DCE15°,

∠AEC∠ACE45°

∠EAC90°,

Rt△ACE中,AE2AC2EC2

EC22AC2,

ECAC

EFFCAC,

∵FCAD,ACBC

EFADBC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以AC為直徑的O與AB邊交于點(diǎn)D,點(diǎn)E是邊BC的中點(diǎn).

1、求證:BC 2=BDBA;

2、判斷DE與O位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB90°,CD為高,BCnAC

1)如圖1,當(dāng)n時(shí),則的值為   ;(直接寫(xiě)出結(jié)果)

2)如圖2,點(diǎn)PBC的中點(diǎn),過(guò)點(diǎn)PPFAPABF,求的值;(用含n的代數(shù)式表示)

3)在(2)的條件下,若PFBF,則n   .(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bxa0)過(guò)點(diǎn)E8,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)CD在拋物線上,∠BAD的平分線AMBC于點(diǎn)M,點(diǎn)NCD的中點(diǎn),已知OA2,且OAAD13.

1)求拋物線的解析式;

2F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長(zhǎng)的最小值;

3)在x軸下方且在拋物線上是否存在點(diǎn)P,使△ODPOD邊上的高為?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

4)矩形ABCD不動(dòng),將拋物線向右平移,當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)KL,且直線KL平分矩形的面積時(shí),求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】央視舉辦的《主持人大賽》受到廣泛的關(guān)注.某中學(xué)學(xué)生會(huì)就《主持人大賽》節(jié)目的喜愛(ài)程度,在校內(nèi)對(duì)部分學(xué)生進(jìn)行了問(wèn)卷調(diào)查,并對(duì)問(wèn)卷調(diào)查的結(jié)果分為“非常喜歡”、“比較喜歡”、“感覺(jué)一般”、“不太喜歡”四個(gè)等級(jí),分別記作、、.根據(jù)調(diào)查結(jié)果繪制出如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

1)本次被調(diào)查對(duì)象共有 人;扇形統(tǒng)計(jì)圖中被調(diào)查者比較喜歡等級(jí)所對(duì)應(yīng)圓心角的度數(shù)為 .

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并標(biāo)明數(shù)據(jù);

3)若選“不太喜歡”的人中有兩個(gè)女生和兩個(gè)男生,從選“不太喜歡”的人中挑選兩個(gè)學(xué)生了解不太喜歡的原因,請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表),求所選取的這兩名學(xué)生恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知如圖,平分,當(dāng),且時(shí),的度數(shù)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰直角和等腰直角分別在直線上.

(1)如圖所示,分別在線段上,若,求證:

(2)分別在線段(還在直線),根據(jù)題意,畫(huà)出圖形,那么(1)的結(jié)論是否依然成立,若成立,寫(xiě)出證明過(guò)程;若不成立,說(shuō)明原因;

(3)如圖,若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中記載:今有甲乙二人持錢(qián)不知其數(shù),甲得乙半而錢(qián)五十,乙得甲太半而錢(qián)亦五十.問(wèn)甲、乙持錢(qián)各幾何?譯文:今有甲乙二人,不知其錢(qián)包里有多少錢(qián).若乙把自己一半的錢(qián)給甲,則甲的錢(qián)數(shù)為50錢(qián);而甲把自己的錢(qián)給乙,則乙的錢(qián)數(shù)也為50錢(qián).問(wèn)甲、乙各有多少錢(qián)?設(shè)甲、乙原有錢(qián)數(shù)分別為、,下列所列方程組正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以直線為對(duì)稱軸的拋物線與直線交于,兩點(diǎn),與軸交于,直線軸交于點(diǎn).

(1)求拋物線的函數(shù)表達(dá)式;

(2)設(shè)直線與拋物線的對(duì)稱軸的交點(diǎn)為,是拋物線上位于對(duì)稱軸右側(cè)的一點(diǎn),若,且的面積相等,求點(diǎn)的坐標(biāo);

(3)若在軸上有且只有一點(diǎn),使,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案