【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A、B、C,已知A(-1,0),B(3,0),C(0,-3).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)若P為線段BC上一點(diǎn),過點(diǎn)P作軸的平行線,交拋物線于點(diǎn)D,當(dāng)△BCD面積最大時,求點(diǎn)P的坐標(biāo);
(3)若M(m,0)是軸上一個動點(diǎn),請求出CM+MB的最小值以及此時點(diǎn)M的坐標(biāo).
【答案】(1);(2)P(,),面積最大為;(3)CM+MB最小值為,M(,0)
【解析】
(1)利用待定系數(shù)法即可求得此拋物線的解析式;(2)由待定系數(shù)法即可求得直線BC的解析式,設(shè)P(a,a-3),得出PD的長,列出S△BDC的表達(dá)式,化簡成頂點(diǎn)式,即可求解;
(3)取G點(diǎn)坐標(biāo)為(0,),過M點(diǎn)作MB′⊥BG,用B′M代替BM,即可得出最小值的情況,再將直線BG、直線B′C的解析式求出,求得M點(diǎn)坐標(biāo)和∠CGB的度數(shù),再根據(jù)∠CGB的度數(shù)利用三角函數(shù)得出最小值B′C的值.
解:(1)∵拋物線經(jīng)過點(diǎn)A、B、C,A(-1,0),B(3,0),C(0,-3),
代入表達(dá)式,解得a= 1,b=-2,c=-3,
∴故該拋物線解析式為:.
(2)令,
∴x1=-1,x2=3,
即B(3,0),
設(shè)直線BC的解析式為y=kx+b′,將B、C代入得:k=,1,b′=-3,
∴直線BC的解析式為y=x-3,
設(shè)P(a,a-3),則D(a,a2-2a-3),
∴PD=(a-3)-(a2-2a-3)= -a2+3a
S△BDC=S△PDC+S△PDB
=PD×3
=,
∴當(dāng)a=時,△BDC的面積最大,且為為,此時P(,);
(3)如圖,取G點(diǎn)坐標(biāo)為(0,),連接BG,
過M點(diǎn)作MB′⊥BG,∴B′M=BM,
當(dāng)C、M、B′在同一條直線上時,CM+MB最小.
可求得直線BG解析式為:,
∵B′C⊥BG
故直線B′C解析式為為,
令y=0,則x=,
∴B′C與x軸交點(diǎn)為(,0)
∵OG=,OB=3,
∴∠CGB=60°,
∴B′C= CGsin∠CGB==,
綜上所述:CM+MB最小值為,此時M(,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在地面上豎直安裝著AB、CD、EF三根立柱,在同一時刻同一光源下立柱AB、CD形成的影子為BG與DH.
(1)填空:判斷此光源下形成的投影是: 投影.
(2)作出立柱EF在此光源下所形成的影子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+ 的圖象經(jīng)過A(﹣1,0),B(3,0),與y軸相交于點(diǎn)C.點(diǎn)P為第一象限的拋物線上的一個動點(diǎn),過點(diǎn)P分別做BC和x軸的垂線,交BC于點(diǎn)E和F,交x軸于點(diǎn)M和N.
(1)求這個二次函數(shù)的解析式;
(2)求線段PE最大值,并求出線段PE最大時點(diǎn)P的坐標(biāo);
(3)若S△PMN=3S△PEF時,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,請根據(jù)要求解答下列問題:
(1)在飛行過程中,當(dāng)小球的飛行高度為15m時,飛行時間是多少?
(2)在飛行過程中,小球從飛出到落地所用時間是多少?
(3)在飛行過程中,小球飛行高度何時最大?最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在正方形ABCD中,點(diǎn)E、F分別為邊BC與CD上的點(diǎn),且∠EAF=45°,AE與AF分別交對角線BD于點(diǎn)M、N,則下列結(jié)論正確的是_____.
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2-4ax+4(a≠0)與y軸交于點(diǎn)A.過點(diǎn)B(0,3)作y軸的垂線l,若拋物線y=ax2-4ax+4(a≠0)與直線l有兩個交點(diǎn),設(shè)其中靠近y軸的交點(diǎn)的橫坐標(biāo)為m,且│m│<1,則a的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點(diǎn),若動點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動,設(shè)E點(diǎn)的運(yùn)動時間為t秒(0≤t<12),連接DE,當(dāng)△BDE是直角三角形時,t的值為( 。
A.4或5B.4或7C.4或5或7D.4或7或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:⊙O上有三個點(diǎn)A,B,C,∠BAC=70°,請畫出要求的角,并標(biāo)注.
(1)畫一個140°的圓心角;(2)畫一個110°的圓周角;(3)畫一個20°的圓周角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀以下材料,并完成相應(yīng)的任務(wù):
任務(wù):
(1)設(shè)P(a,),R(b,),求直線OM的函數(shù)解析式(用含a,b的代數(shù)式表示),并說明Q點(diǎn)在直線OM上;
(2)證明:∠MOB=∠AOB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com