【題目】如圖,拋物線y=x2﹣2x+c的頂點(diǎn)A在直線l:y=x﹣5上.

(1)求拋物線頂點(diǎn)A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)C、D(C點(diǎn)在D點(diǎn)的左側(cè)),試判斷△ABD的形狀;
(3)在直線l上是否存在一點(diǎn)P,使以點(diǎn)P、A、B、D為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】
(1)

解:∵頂點(diǎn)A的橫坐標(biāo)為x=﹣ =1,且頂點(diǎn)A在y=x﹣5上,

∴當(dāng)x=1時,y=1﹣5=﹣4,

∴A(1,﹣4)


(2)

解:方法一:

△ABD是直角三角形.

將A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,

∴y=x2﹣2x﹣3,∴B(0,﹣3)

當(dāng)y=0時,x2﹣2x﹣3=0,x1=﹣1,x2=3

∴C(﹣1,0),D(3,0),

BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,

BD2+AB2=AD2,

∴∠ABD=90°,即△ABD是直角三角形.

方法二:

把A(1,﹣4)代入y=x2﹣2x+c,得c=﹣3,

∴y=x2﹣2x+3=(x﹣3)(x+1),

∴D(3,0),B(0,﹣3),A(1,﹣4),

KBD= =1,KAB= =﹣1,

∴KBDKAB=﹣1,

∴AB⊥BD,即△ABD為直角三角形


(3)

解:存在.

由題意知:直線y=x﹣5交y軸于點(diǎn)E(0,﹣5),交x軸于點(diǎn)F(5,0)

∴OE=OF=5,

又∵OB=OD=3

∴△OEF與△OBD都是等腰直角三角形

∴BD∥l,即PA∥BD

則構(gòu)成平行四邊形只能是PADB或PABD,如圖,

過點(diǎn)P作y軸的垂線,過點(diǎn)A作x軸的垂線交過P且平行于x軸的直線于點(diǎn)G.

設(shè)P(x1,x1﹣5),則G(1,x1﹣5)

則PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|

PA=BD=3

由勾股定理得:

(1﹣x12+(1﹣x12=18,x12﹣2x1﹣8=0,x1=﹣2或4

∴P(﹣2,﹣7)或P(4,﹣1),

存在點(diǎn)P(﹣2,﹣7)或P(4,﹣1)使以點(diǎn)A、B、D、P為頂點(diǎn)的四邊形是平行四邊形.


【解析】方法一:(1)先根據(jù)拋物線的解析式得出其對稱軸,由此得到頂點(diǎn)A的橫坐標(biāo),然后代入直線l的解析式中即可求出點(diǎn)A的坐標(biāo).(2)由A點(diǎn)坐標(biāo)可確定拋物線的解析式,進(jìn)而可得到點(diǎn)B的坐標(biāo).則AB、AD、BD三邊的長可得,然后根據(jù)邊長確定三角形的形狀.(3)若以點(diǎn)P、A、B、D為頂點(diǎn)的四邊形是平行四邊形,應(yīng)分①AB為對角線、②AD為對角線兩種情況討論,即①AD PB、②AB PD,然后結(jié)合勾股定理以及邊長的等量關(guān)系列方程求出P點(diǎn)的坐標(biāo).
方法二:(1)略.(2)分別求出直線AB與直線BD的斜率,并證明兩直線斜率的乘積等于﹣1,從而證明△ABD為直角三角形.(3)先證明直線BD平行AP,則只需PA=BD時,采用坐標(biāo)平移法,可求出P點(diǎn)坐標(biāo).4利用梯形面積公式可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察分析下列方程:① ,② ,③ ;請利用它們所蘊(yùn)含的規(guī)律,求關(guān)于x的方程 (n為正整數(shù))的根,你的答案是:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是 的中點(diǎn),弦CE⊥AB于點(diǎn)F,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論: ①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心;④APAD=CQCB.
其中正確的是(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中, ,點(diǎn)DBC所在的直線上,點(diǎn)E在射線AC上,且,連接DE

(1)如圖①,若, ,求的度數(shù);

(2)如圖②,若, ,求的度數(shù);

(3)當(dāng)點(diǎn)D在直線BC上(不與點(diǎn)B、C重合)運(yùn)動時,試探究的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上3條互不重合的直線交于一點(diǎn),其中對頂角有( 。

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式中的x

1x30.0270

2)(x229

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長為3cm,動點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿A→B→C的方向運(yùn)動,到達(dá)點(diǎn)C時停止,設(shè)運(yùn)動時間為x(秒),y=PC2 , 則y關(guān)于x的函數(shù)的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】來自中國、美國、立陶宛、加拿大的四國青年男籃巔峰爭霸賽于2014325-27日在我縣體育館舉行。小明來到體育館看球賽,進(jìn)場時,發(fā)現(xiàn)門票還在家里,此時離比賽開始還有25分鐘,于是立即步行回家取票.同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父、子倆送票、取票過程中,離體育館的路程S(米)與所用時間t(分鐘)之間的圖象,結(jié)合圖象解答下列問題(假設(shè)騎自行車和步行的速度始終保持不變):

(1)從圖中可知,小明家離體育館 米,父子倆在出發(fā)后 分鐘相遇.

(2)求出父親與小明相遇時距離體育館還有多遠(yuǎn)?

(3)小明能否在比賽開始之前趕回體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算:(π﹣2)0﹣| + |×(﹣ );
(2)化簡:(1+ )÷(2x﹣

查看答案和解析>>

同步練習(xí)冊答案