【題目】如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為_____.(答案用根號(hào)表示)
【答案】6π﹣
【解析】
連接OD,利用折疊性質(zhì)得由弧AD、線段AC和CD所圍成的圖形的面積等于陰影部分的面積,根據(jù)勾股定理求出CD=3 ,從而得到∠CDO=30°,∠COD=60°,然后根據(jù)扇形面積公式,利用由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD-S△COD,進(jìn)行計(jì)算即可.
連接OD,
∵扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,
∴AC=OC,OD=2OC=6,
∴
∴∠CDO=30°,∠COD=60°,
∴由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD﹣S△COD=
∴陰影部分的面積為6π﹣,
故答案為:6π﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,,,,,點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿折線方向運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿線段方向向點(diǎn)運(yùn)動(dòng)、已知?jiǎng)狱c(diǎn),同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn),停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,在這個(gè)運(yùn)動(dòng)過(guò)程中,若的面積為,則滿足條件的的值有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)證明該方程一定有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)該方程兩根為x1、x2(x1<x2).
①當(dāng)時(shí),試確定y值的范圍;
②如圖,平面直角坐標(biāo)系中有三點(diǎn)A、B、C,坐標(biāo)分別為(x1,0)、(x2,3)、(7,0).以點(diǎn)C為圓心,2個(gè)單位長(zhǎng)度為半徑的圓與直線AB相切,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形FCDE,設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0).
(1)當(dāng)α=45°時(shí),求H點(diǎn)的坐標(biāo).
(2)當(dāng)α=60°時(shí),ΔCBD是什么特殊的三角形?說(shuō)明理由.
(3)當(dāng)AH=HC時(shí),求直線HC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐與探究
在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F.
(1)如圖(1),當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);
(2)如圖(2),當(dāng)點(diǎn)D落在線段BE上時(shí),AD與BC交于點(diǎn)H.
①求證:ΔADB≌ΔAOB;
②求點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一塊含有45°的三角板ABC的頂點(diǎn)A放在⊙O上,且AC與⊙O相切于點(diǎn)A(如圖1),將△ABC從點(diǎn)A開始,繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<135°),旋轉(zhuǎn)后,AC、AB分別與⊙O交于點(diǎn)E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉(zhuǎn)過(guò)程中,有以下幾個(gè)量:①弦EF的長(zhǎng);②的長(zhǎng);③∠AFE的度數(shù);④點(diǎn)O到EF的距離.其中不變的量是___________________(填序號(hào));
(2)當(dāng)α=________°時(shí),BC與⊙O相切(直接寫出答案);
(3)當(dāng)BC與⊙O相切時(shí),求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把某矩形紙片ABCD沿EF,GH折疊(點(diǎn)E,H在AD邊上,點(diǎn)F,G在BC邊上),使點(diǎn)B和點(diǎn)C落在AD邊上同一點(diǎn)P處,A點(diǎn)的對(duì)稱點(diǎn)為A′點(diǎn),D點(diǎn)的對(duì)稱點(diǎn)為D′點(diǎn),若∠FPG=90°,△A′EP的面積為5,△D′PH的面積為20,則矩形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個(gè)點(diǎn).∠APC=∠CPB=60°.
(1)判斷△ABC的形狀: ;
(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)點(diǎn)P位于的什么位置時(shí),四邊形APBC的面積最大?求出最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com