【題目】青少年視力水平下降已引起全社會的廣泛關(guān)注,為了解某市初中畢業(yè)年級5 000名學(xué)生的視力情況,我們從中抽取了一部分學(xué)生的視力作為樣本進(jìn)行數(shù)據(jù)處理,得到如下的不完整的頻數(shù)分布表和頻數(shù)分布直方圖:

請根據(jù)以上圖表信息回答下列問題:

(1)在頻數(shù)分布表中,a=________,b=________;

(2)補全條形統(tǒng)計圖;

(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少?

【答案】 60 0.05

【解析】

(1)由頻數(shù)分布表中在的信息可知:視力在4.0≤x<4.3的人數(shù)為20,頻率為0.1,由此即可得到被抽查的學(xué)生總數(shù)為:20÷0.1=200(人),這樣由200×0.3可得a,由10÷200可得b;

(2)根據(jù)(1)所得a的值,將條形統(tǒng)計圖補充完整即可;

(3)根據(jù)題意將視力在4.6及以上的三組數(shù)據(jù)的頻率相加,再將所得的和與5000相乘即可得到所求的值.

(1)由頻數(shù)分布表知,視力在4.0≤x<4.3的人數(shù)為20,頻率為0.1,

此次調(diào)查的總?cè)藬?shù)為20÷0.1=200,

∴a=200×0.3=60,b=10÷200=0.05;

(2)由(1)可知a=60,則補全條形統(tǒng)計圖如下:

(3)由題意可得5 000(0.35+0.3+0.05)=3500(人).

答:估計全市九年級學(xué)生中視力正常的有3500.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C三點在一條直線上,根據(jù)圖形填空:

1AC   +   +   ;

2ABAC   

3DB+BC   AD

4)若AC8cm,D是線段AC中點,B是線段DC中點,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小茗在一張紙上畫一條數(shù)軸,并在數(shù)軸上標(biāo)出兩個點,點表示的數(shù)是,點表示的數(shù)是12

1)若數(shù)軸上點與點相距3個單位長度,求點所表示的數(shù);

2)將這張紙對折,使點與點剛好重合,折痕與數(shù)軸交于點,求點表示的數(shù);

3)點和點同時從初始位置沿數(shù)軸向左運動,點的速度是每秒1個單位長度,點的速度是每秒2個單位長度,運動時間是.是否存在的值,使秒后點到原點的距離等于點到原點的距離的兩倍?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操場上有一根豎直立在地面上的旗桿,繩子自然下垂到地面還剩余2米,當(dāng)把繩子拉開8米后,繩子剛好斜著拉直下端接觸地面(如圖

(1)請根據(jù)你的閱讀理解,將題目的條件補充完整:如圖,RtABC中 C=90°,BC=8米,____________________________.求AC的長.

(2)根據(jù)(1)中的條件,求出旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】龜兔首次賽跑之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了龜兔再次賽跑的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:

龜兔再次賽跑的路程為1000

兔子和烏龜同時從起點出發(fā);

烏龜在途中休息了10分鐘;

兔子在途中750處追上烏龜.

其中正確的說法是   .(把你認(rèn)為正確說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABE△ADC△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】模型介紹:古希臘有一個著名的“將軍飲馬問題”,大致內(nèi)容如下:古希臘一位將軍,每天都要巡查河岸側(cè)的兩個軍營A、B,他總是先去A營,再到河邊飲馬,之后再去B營,如圖①,他時常想,怎么走才能使每天的路程之和最短呢?

大數(shù)學(xué)家海倫曾用軸對稱的方法巧妙的解決了這問題.

如圖②,作B關(guān)于直線l的對稱點B′,連接AB′與直線l交于點C,點C就是所求的位置.

請你在下列的閱讀、應(yīng)用的過程中,完成解答.

(1)理由:如圖③,在直線l上另取任一點C′,連接AC′,BC′,B′C′,

∵直線l是點B,B′的對稱軸,點C,C′在l上,

∴CB=_______,C′B=_______.

∴AC+CB=AC+CB′=_______

在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.

歸納小結(jié):

本問題實際是利用軸對稱變換的思想,把A、B在直線的同側(cè)問題轉(zhuǎn)化為在直線的兩側(cè),從而可利用“兩點之間線段最短”,即轉(zhuǎn)化為“三角形兩邊之和大于第三邊”的問題加以解決(其中C為AB′與l的交點,即A、C、B′三點共線).

本問題可拓展為“求定直線上一動點與直線外兩定點的距離和的最小值”問題的數(shù)學(xué)模型.

(2)模型應(yīng)用

如圖 ④,正方形ABCD的邊長為2,E為AB的中點,F(xiàn)是AC上一動點,求EF+FB的最小值.

解決這個問題,可以借助上面的模型,由正方形的對稱性可知,B與D關(guān)于直線AC對稱,連接ED交AC于F,則EF+FB的最小值就是線段DE的長度,EF+FB的最小值是_______

如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點B是弧AD的中點,在直徑CD上找一點P,使BP+AP的值最小,則BP+AP的最小值是_______;

如圖⑥,一次函數(shù)y=-2x+4的圖象與x,y軸分別交于A,B兩點,點O為坐標(biāo)原點,點C與點D分別為線段OA,AB的中點,點P為OB上一動點,求PC+PD的最小值,并寫出取得最小值時P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將長為20cm,寬為8cm的長方形白紙,按如圖所示的方式粘合起來,粘合部分的寬為3cm.

(1)根據(jù)題意,將下面的表格補充完整.

白紙張數(shù)x()

1

2

3

4

5

紙條總長度y(cm)

20

54

71

2)直接寫出yx的關(guān)系式.

(3)要使粘合后的長方形總面積為1656cm2,則需用多少張這樣的白紙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課本中,有這樣一道題:已知:如(圖1),∠B+C=∠BEC求證:ABCD

1)請補充下面證明過程

證明:過點E,做EFAB,如(圖2

∴∠B=∠   

∵∠B+C=∠BECBEF+FEC=∠BEC(已知)

∴∠B+C=∠BEF+FEC(等量代換)

∴∠   =∠   (等式性質(zhì))

EF   

EFAB

ABCD(平行于同一條直線的兩條直線互相平行)

2)請再選用一種方法,加以證明

查看答案和解析>>

同步練習(xí)冊答案