【題目】已知二次函數(shù)

1該二次函數(shù)圖象的對(duì)稱軸是x ;

2若該二次函數(shù)的圖象開(kāi)口向下,當(dāng)時(shí), 的最大值是2求當(dāng)時(shí), 的最小值

3)若對(duì)于該拋物線上的兩點(diǎn), 當(dāng), 時(shí),均滿足,請(qǐng)結(jié)合圖象,直接寫(xiě)出的最大值

【答案】12;(2)-6;(34

【解析】試題分析:

(1)由二次函數(shù)的對(duì)稱軸為直線即可求出的對(duì)稱軸為直線: ;

(2)由題意結(jié)合(1)中所得拋物線的對(duì)稱軸為直線可得,當(dāng)時(shí), 最大=,由此可解得;由對(duì)稱軸分為兩個(gè)部分,結(jié)合對(duì)稱軸兩側(cè)函數(shù)的增減性即可求得當(dāng)時(shí), 的最小值;

(3)由題意可得拋物線x軸交于點(diǎn)(10)和(3,0);分a>0a<0兩種情況畫(huà)出圖象結(jié)合已知條件進(jìn)行分析解答即可;

試題解析:

1二次函數(shù)圖象的對(duì)稱軸為直線

∴二次函數(shù)的圖象的對(duì)稱軸為直線: ;

2 該二次函數(shù)的圖象開(kāi)口向下,且對(duì)稱軸為直線

當(dāng)時(shí),y取到在上的最大值為2.

.

, .

當(dāng)時(shí),yx的增大而增大,

當(dāng)時(shí),y取到在上的最小值.

當(dāng)時(shí),yx的增大而減小,

當(dāng)時(shí),y取到在上的最小值.

當(dāng)時(shí),y的最小值為.

3∵二次函數(shù),

二次函數(shù)的圖象交軸于點(diǎn)1,0)和(3,0),由此分畫(huà)出圖象如下

如圖當(dāng)時(shí),拋物線開(kāi)口向上由題意可知,此時(shí)點(diǎn)Q在直線的右側(cè),由圖可知此時(shí)不存t的值,使當(dāng), 時(shí)始終滿足成立;

當(dāng)時(shí),拋物線開(kāi)口向下由題意可知,此時(shí)點(diǎn)Q在直線的右側(cè)由圖可知,當(dāng)點(diǎn)P在拋物線上點(diǎn)M和點(diǎn)N之間的部分圖象上時(shí),存在t,使當(dāng), 時(shí)始終滿足成立;此時(shí),點(diǎn)M1關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)N的橫坐標(biāo)為:-1,,解得,所以的最大值為.

綜合①②可得滿足條件的的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CDAB于點(diǎn)D,∠ACD=3BCD,E是斜邊AB的中點(diǎn),則∠ECD的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)y1與投資量x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).

投資量x(萬(wàn)元)

2

種植樹(shù)木利潤(rùn)y1(萬(wàn)元)

4

種植花卉利潤(rùn)y2(萬(wàn)元)

2

(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;

(2)如果這位專業(yè)戶以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉金額m萬(wàn)元,種植花卉和樹(shù)木共獲利利潤(rùn)W萬(wàn)元,直接寫(xiě)出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?

(3)若該專業(yè)戶想獲利不低于22萬(wàn),在(2)的條件下,直接寫(xiě)出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是2,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)PQ分別是ADAE上的動(dòng)點(diǎn),則DQ+PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)x0)與y=ax+b的圖象交于點(diǎn)A(﹣1,n)和點(diǎn)B(﹣2,1).

(1)求k,a,b的值;

(2)直線x=m與x0)的圖象交于點(diǎn)P,與y=﹣x+1的圖象交于點(diǎn)Q,當(dāng)PAQ90°時(shí),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為矩形ABCD對(duì)角線的交點(diǎn),DEAC,CEBD

1試判斷四邊形OCED的形狀,并說(shuō)明理由;

2)若AB=6,BC=8,求四邊形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲.乙兩同學(xué)騎自行車(chē)從A地沿同一條路到B,已知乙比甲先出發(fā),他們離出發(fā)地的距離Skm)和騎行時(shí)間th)之間的函數(shù)關(guān)系如圖1所示,給出下列說(shuō)法:①他們都騎行了20km;②乙在途中停留了0.5h;③甲.乙兩人同時(shí)到達(dá)目的地;④相遇后甲的速度小于乙的速度

根據(jù)圖象信息,以上說(shuō)法正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC,A90°,ABAC

1)如圖1,ABC的角平分線BD,CE交于點(diǎn)Q,請(qǐng)判斷“”是否正確________(填“是”或“否”)

2)點(diǎn)PABC所在平面內(nèi)的一點(diǎn),連接PA,PB,PB PA

①如圖2,點(diǎn)P在△ABC內(nèi)ABP30°,PAB的大小

②如圖3,點(diǎn)P在△ABC連接PC,設(shè)APCα,BPCβ,用等式表示α,β之間的數(shù)量關(guān)系并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

同步練習(xí)冊(cè)答案