【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是   ;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是   

【答案】(1)畫圖見解析,(2,-2);(2)畫圖見解析,(1,0);

【解析】

(1)將△ABC向下平移4個單位長度得到的△A1B1C1,如圖所示,找出所求點坐標(biāo)即可;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,如圖所示,找出所求點坐標(biāo)即可.

(1)如圖所示,畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是(2,-2);

(2)如圖所示,以B為位似中心,畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是(1,0),

故答案為:(1)(2,-2);(2)(1,0)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, BD ABC 的角平分線, AE BD ,垂足為 F ,若∠ABC35°,∠ C50°,則∠CDE 的度數(shù)為(

A.35°B.40°C.45°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,點E、F分別在邊BC、CD上,且∠EAF=45°,AHEF于點H,AH=10,連接BD,分別交AE、AH、AF于點P、G、Q.

(1)求CEF的周長;

(2)若EBC的中點,求證:CF=2DF;

(3)連接QE,求證:AQ=EQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形A'B'C'D'在矩形ABCD的內(nèi)部,ABA'B',ADA'D',且AD=12,AB=6,設(shè)ABA'B'、BCB'C'、CDC'D'、DAD'A'之間的距離分別為a,b,c,d,

(1)a=b=c=d=2,矩形A'B'C'D'∽矩形ABCD嗎,為什么?

(2)若矩形A'B'C'D'∽矩形ABCD,a,b,c,d應(yīng)滿足什么等量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰直角三角形ABC中,∠ACB90°,BCm,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,過點DDECBCB的延長線于點E,連接CD

1)直接寫出BCD的面積為   (用含m的式子表示).

2)如圖2,在一般的RtABC中,∠ACB90°BCm,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,用含m的式子表示BCD的面積,并說明理由.

3)如圖3,在等腰ABC中,ABAC,BC8,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,則BCD的面積為   ;若BCm,則BCD的面積為   (用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AC=BC,C=90AD是△ABC的角平分線,DEAB,垂足為E.求證:AB=AC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角坐標(biāo)平面內(nèi)的兩點A(3,2),B (6,0)過點BY軸的平行線交直線OA于點C

1)求直線OA所對應(yīng)的函數(shù)解析式

2)若某一個反比例函數(shù)的圖像經(jīng)過點A,且交BC于點D,聯(lián)結(jié)AD,ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD為∠BAC的平分線,DGBC且平分BCDEABE,DFACAC的延長線于F


1)求證:BE=CF
2)如果AB=7,AC=5,求AE,BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,分析下列五個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個。

查看答案和解析>>

同步練習(xí)冊答案