【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE= BF.
【答案】
(1)證明:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.
∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
,
∴Rt△DFB≌Rt△DAC(AAS),
∴BF=AC
(2)證明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中,
,
∴Rt△BEA≌Rt△BEC(ASA).
∴CE=AE= AC,
又∵BF=AC,
∴CE= BF
【解析】(1)根據(jù)三角形的內(nèi)角和定理求出∠A=∠DFB,推出BD=DC,根據(jù)AAS證出△BDF≌△CDA即可;(2)推出∠AEB=∠CEB,∠ABE=∠CBE,根據(jù)ASA證出△AEB≌△CEB,推出AE=CE即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃麻中學(xué)為了創(chuàng)建全省“最美書屋”,購買了一批圖書,其中科普類圖書平均每本的價(jià)格比文學(xué)類圖書平均每本的價(jià)格多5元,已知學(xué)校用12000元購買的科普類圖書的本數(shù)與用5000元購買的文學(xué)類圖書的本數(shù)相等,求學(xué)校購買的科普類圖書和文學(xué)類圖書平均每本的價(jià)格各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點(diǎn),若CF=1,F(xiàn)D=2,則BC的長為( )
A.3
B.2
C.2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是( )
A.4
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣2,1),B(1,4),若反比例函數(shù)y= 與線段AB有公共點(diǎn)時(shí),k的取值范圍是( )
A.﹣2≤k≤4
B.k≤﹣2或k≥4
C.﹣2≤k<0或k≥4
D.﹣2≤k<0或0<k≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種新型節(jié)能電水壺并加以銷售,現(xiàn)準(zhǔn)備在甲城市和乙城市兩個不同地方按不同銷售方案進(jìn)行銷售,以便開拓市場. 若只在甲城市銷售,銷售價(jià)格為y(元/件)、月銷量為x(件),y是x的一次函數(shù),如表,
月銷量x(件) | 1500 | 2000 |
銷售價(jià)格y(元/件) | 185 | 180 |
成本為50元/件,無論銷售多少,每月還需支出廣告費(fèi)72500元,設(shè)月利潤為W甲(元)
(利潤=銷售額﹣成本﹣廣告費(fèi)).
若只在乙城市銷售,銷售價(jià)格為200元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),40≤a≤70),當(dāng)月銷量為x(件)時(shí),每月還需繳納 x2元的附加費(fèi),設(shè)月利潤為W乙(元)(利潤=銷售額﹣成本﹣附加費(fèi)).
(1)當(dāng)x=1000時(shí),y甲=元/件,w甲=元;
(2)分別求出W甲 , W乙與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當(dāng)x為何值時(shí),在甲城市銷售的月利潤最大?若在乙城市銷售月利潤的最大值與在甲城市銷售月利潤的最大值相同,求a的值;
(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在甲城市還是在乙城市銷售才能使所獲月利潤較大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長CE到點(diǎn)F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知經(jīng)過原點(diǎn)的拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣1,下列結(jié)論中:
①ab>0,②a+b+c>0,③當(dāng)﹣2<x<0時(shí),y<0.
正確的個數(shù)是( 。
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com