(2010•泉港區(qū)質(zhì)檢)如圖,在?ABCD中,點(diǎn)E是CD的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線(xiàn)于F點(diǎn).
(1)求證:△ADE≌△FCE;
(2)若CF=5,求出BC的長(zhǎng).

【答案】分析:(1)利用平行四邊形的性質(zhì),可以得到角相等,又因?yàn)辄c(diǎn)E是CD的中點(diǎn),易證△ADE≌△FCE(AAS或ASA);
(2)由全等三角形的對(duì)應(yīng)邊相等,易得AD=CF;根據(jù)平行四邊形對(duì)邊相等,易得BC=AD.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BF,
∴∠D=∠ECF,
∵E是CD的中點(diǎn),
∴DE=CE,
又∵∠AED=∠FEC,
∴△ADE≌△FCE;

(2)解:∵△ADE≌△FCE,
∴AD=CF=5,
∴在?ABCD中,BC=AD=5.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì):平行四邊形的對(duì)邊平行且相等.還考查了全等三角形的判定與性質(zhì).解題時(shí)注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省泉州市泉港區(qū)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•泉港區(qū)質(zhì)檢)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn).
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)若有一條開(kāi)口向下的拋物線(xiàn)經(jīng)過(guò)點(diǎn)A,B,且其頂點(diǎn)P在⊙C上,請(qǐng)求出此拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省泉州市泉港區(qū)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•泉港區(qū)質(zhì)檢)如圖,CE是梯形OABD的中位線(xiàn),B點(diǎn)在函數(shù)y=的圖象上,若A(13,0)、C(8,2),則k的值為( )

A.1
B.4
C.8
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省泉州市泉港區(qū)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•泉港區(qū)質(zhì)檢)某養(yǎng)殖專(zhuān)業(yè)戶(hù)計(jì)劃利用房屋的一面墻修造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗.他已準(zhǔn)備可以修高為3m.長(zhǎng)30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長(zhǎng)為xm.(不考慮水池墻的厚度)
(1)請(qǐng)直接寫(xiě)出AB的長(zhǎng)(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)如果房屋的墻壁可利用的長(zhǎng)度為10.5m,請(qǐng)利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省泉州市泉港區(qū)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•泉港區(qū)質(zhì)檢)把兩塊含有30°的相同的直角尺按如圖所示擺放,連接CE交AB于D.若BC=6cm,則①AB=    cm;②△BCD的面積S=    cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省泉州市泉港區(qū)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•泉港區(qū)質(zhì)檢)小明在做擲一枚普通的正方體骰子實(shí)驗(yàn),請(qǐng)寫(xiě)出這個(gè)實(shí)驗(yàn)中一個(gè)可能發(fā)生的事件:   

查看答案和解析>>

同步練習(xí)冊(cè)答案