兩個(gè)數(shù)的差為3,設(shè)其中較小的一個(gè)數(shù)為x,兩個(gè)數(shù)的積為y,則y與x之間的函數(shù)表達(dá)式為_(kāi)_______.

答案:
解析:

yx23x


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知y=m2+m+4,若m為整數(shù),在使得y為完全平方數(shù)的所有m的值中,設(shè)m的最大值為a,最小值為b,次小值為c.(注:一個(gè)數(shù)如果是另一個(gè)整數(shù)的完全平方,那么我們就稱這個(gè)數(shù)為完全平方數(shù).)
(1)求a、b、c的值;
(2)對(duì)a、b、c進(jìn)行如下操作:任取兩個(gè)求其和再除以
2
,同時(shí)求其差再除以
2
,剩下的另一個(gè)數(shù)不變,這樣就仍得到三個(gè)數(shù).再對(duì)所得三個(gè)數(shù)進(jìn)行如上操作,問(wèn)能否經(jīng)過(guò)若干次上述操作,所得三個(gè)數(shù)的平方和等于2008證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若m為整數(shù),在使m2+m+4為完全平方數(shù)的所有m的值中,設(shè)其最大值為a,最小值為b,次小值為c.
(1)求a、b、c的值;
(2)對(duì)a、b、c進(jìn)行如下操作:任取兩個(gè)求其和再除以
2
,同時(shí)求其差再除以
2
,加上剩下的一個(gè)數(shù),這樣就仍得到三個(gè)數(shù).再對(duì)所得三個(gè)數(shù)進(jìn)行如上操作,問(wèn)能否經(jīng)過(guò)若干次上述操作,得到2004,2005,2006?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索題:
(1)設(shè)n表示任意一個(gè)整數(shù),則用含有n的代數(shù)式表示任意一個(gè)偶數(shù)為
2n
2n
,用含有n的代數(shù)式表示任意一個(gè)奇數(shù)為
2n+1或2n-1
2n+1或2n-1
;
(2)用舉例驗(yàn)證的方法探索:任意兩個(gè)整數(shù)的和與這兩個(gè)數(shù)的差是否同時(shí)為奇數(shù)或同時(shí)為偶數(shù)?你的結(jié)論是
(填“是”或“否”);
(3)設(shè)a、b是任意的兩個(gè)整數(shù),試用“用字母表示數(shù)”的方法并分情況來(lái)說(shuō)明a+b和a-b是否“同奇”或“同偶”?并進(jìn)一步得出一般性的結(jié)論.
例:①設(shè)a=2m,b=2n.
則a+b=2m+2n=2(m+n);a-b=2m-2n=2(m-n);
此時(shí)a+b和a-b同時(shí)為偶數(shù).
請(qǐng)你仿照以上的方法并考慮其余所有可能的情況加以計(jì)算和說(shuō)明;
(4)以(3)的結(jié)論為基礎(chǔ)進(jìn)一步探索:-a+b、-a-b、a+b、a-b是否“同奇”“同偶”?
(5)應(yīng)用第(2)、(3)、(4)的結(jié)論完成:在2014個(gè)自然數(shù)1,2,3,…,2013,2014的每一個(gè)數(shù)的前面任意添加“+”或“-”,則其代數(shù)和一定是
奇數(shù)
奇數(shù)
(填“奇數(shù)”或“偶數(shù)”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年廣東省深圳市東湖中學(xué)九年級(jí)數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:解答題

已知y=m2+m+4,若m為整數(shù),在使得y為完全平方數(shù)的所有m的值中,設(shè)m的最大值為a,最小值為b,次小值為c.(注:一個(gè)數(shù)如果是另一個(gè)整數(shù)的完全平方,那么我們就稱這個(gè)數(shù)為完全平方數(shù).)
(1)求a、b、c的值;
(2)對(duì)a、b、c進(jìn)行如下操作:任取兩個(gè)求其和再除以,同時(shí)求其差再除以,剩下的另一個(gè)數(shù)不變,這樣就仍得到三個(gè)數(shù).再對(duì)所得三個(gè)數(shù)進(jìn)行如上操作,問(wèn)能否經(jīng)過(guò)若干次上述操作,所得三個(gè)數(shù)的平方和等于2008證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年江蘇省淮安市淮陰中學(xué)高中招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知y=m2+m+4,若m為整數(shù),在使得y為完全平方數(shù)的所有m的值中,設(shè)m的最大值為a,最小值為b,次小值為c.(注:一個(gè)數(shù)如果是另一個(gè)整數(shù)的完全平方,那么我們就稱這個(gè)數(shù)為完全平方數(shù).)
(1)求a、b、c的值;
(2)對(duì)a、b、c進(jìn)行如下操作:任取兩個(gè)求其和再除以,同時(shí)求其差再除以,剩下的另一個(gè)數(shù)不變,這樣就仍得到三個(gè)數(shù).再對(duì)所得三個(gè)數(shù)進(jìn)行如上操作,問(wèn)能否經(jīng)過(guò)若干次上述操作,所得三個(gè)數(shù)的平方和等于2008證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案