【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線(a0)經(jīng)過(guò)點(diǎn)B.

(1)求該拋物線的函數(shù)表達(dá)式;

(2)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;

(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動(dòng)點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.

①寫(xiě)出點(diǎn)M′的坐標(biāo);

②將直線l繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2,當(dāng)d1+d2最大時(shí),求直線l′旋轉(zhuǎn)的角度(即BAC的度數(shù)).

【答案】(1);(2)S=當(dāng)m=時(shí),S取得最大值;(3)M′(,;45°.

【解析】

試題分析:(1)利用直線l的解析式求出B點(diǎn)坐標(biāo),再把B點(diǎn)坐標(biāo)代入二次函數(shù)解析式即可求出a的值;

(2)設(shè)M的坐標(biāo)為(m,),然后根據(jù)面積關(guān)系將ABM的面積進(jìn)行轉(zhuǎn)化;

(3)①由(2)可知m=,代入二次函數(shù)解析式即可求出縱坐標(biāo)的值;

②可將求d1+d2最大值轉(zhuǎn)化為求AC的最小值.

試題解析:(1)令x=0代入y=﹣3x+3,y=3,B(0,3),把B(0,3)代入,3=a+4,a=﹣1,二次函數(shù)解析式為:;

(2)令y=0代入,x=﹣1或3,拋物線與x軸的交點(diǎn)橫坐標(biāo)為﹣1和3,M在拋物線上,且在第一象限內(nèi),0m3,令y=0代入y=﹣3x+3,x=1,A的坐標(biāo)為(1,0),由題意知:M的坐標(biāo)為(m,),S=S四邊形OAMB﹣S△AOB

=S△OBM+S△OAM﹣S△AOB=×m×3+×1×)﹣×1×3=,S==,當(dāng)m=時(shí),S取得最大值

(3)①由(2)可知:M′的坐標(biāo)為(,);

②過(guò)點(diǎn)M′作直線l1l′,過(guò)點(diǎn)B作BFl1于點(diǎn)F,根據(jù)題意知:d1+d2=BF,此時(shí)只要求出BF的最大值即可,∵∠BFM′=90°,點(diǎn)F在以BM′為直徑的圓上,設(shè)直線AM′與該圓相交于點(diǎn)H,點(diǎn)C在線段BM′上,F在優(yōu)弧上,當(dāng)F與M′重合時(shí),BF可取得最大值,此時(shí)BM′l1,A(1,0),B(0,3),M′(,),由勾股定理可求得:AB=,M′B=,M′A=,過(guò)點(diǎn)M′作M′GAB于點(diǎn)G,設(shè)BG=x,由勾股定理可得:,,x=,cosM′BG==,l1l′,∴∠BCA=90°,BAC=45°;

方法二:過(guò)B點(diǎn)作BD垂直于l′于D點(diǎn),過(guò)M點(diǎn)作ME垂直于l′于E點(diǎn),則BD=d1,ME=d2S△ABM=×AC×(d1+d2,當(dāng)d1+d2取得最大值時(shí),AC應(yīng)該取得最小值,當(dāng)ACBM時(shí)取得最小值.

根據(jù)B(0,3)和M′(,)可得BM′=,S△ABM=×AC×BM′=AC=,當(dāng)ACBM′時(shí),cosBAC===,∴∠BAC=45°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景點(diǎn)試開(kāi)放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過(guò)30人時(shí),人均收費(fèi)120元;超過(guò)30人且不超過(guò)m(30<m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過(guò)m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.

(1)求y關(guān)于x的函數(shù)表達(dá)式;

(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過(guò)一定數(shù)量時(shí),會(huì)出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,CD=12,BC=15,點(diǎn)E在AB上,將△DAE沿DE折疊,使點(diǎn)A落在對(duì)角線BD上的點(diǎn)A1處,求AE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】性質(zhì)1:兩直線平行,同位角____

性質(zhì)2:兩直線_____,內(nèi)錯(cuò)角相等;

性質(zhì)3:兩直線平行,______互補(bǔ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷(xiāo)售某款童裝,每件售價(jià)60元,每星期可賣(mài)300件,為了促銷(xiāo),該網(wǎng)店決定降價(jià)銷(xiāo)售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣(mài)30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷(xiāo)售量為y件.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)多少元?

(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷(xiāo)售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】東坡商貿(mào)公司購(gòu)進(jìn)某種水果的成本為20元/kg,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來(lái)48天的銷(xiāo)售單價(jià)p(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為:

,且其日銷(xiāo)售量y(kg)與時(shí)間t(天)的關(guān)系如下表:

(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷(xiāo)售量是多少?

(2)問(wèn)哪一天的銷(xiāo)售利潤(rùn)最大?最大日銷(xiāo)售利潤(rùn)為多少?

(3)在實(shí)際銷(xiāo)售的前24天中,公司決定每銷(xiāo)售1kg水果就捐贈(zèng)n元利潤(rùn)(n<9)給精準(zhǔn)扶貧對(duì)象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為節(jié)約能源,某市眾多車(chē)主響應(yīng)號(hào)召,將燃油汽車(chē)改裝為天然氣汽車(chē).某日上午7:00-8:00, 燃?xì)夤窘o該城西加氣站的儲(chǔ)氣罐加氣,8:00 加氣站開(kāi)始為前來(lái)的車(chē)輛加氣. 儲(chǔ)氣罐內(nèi)的天然氣總量y(立方米)隨加氣時(shí)間x(時(shí))的變化而變化.

(1)在7:00-8:00 范圍內(nèi),y 隨x的變化情況如圖13 所示,求y 關(guān)于x 的函數(shù)解析式;

(2)在8:00-12:00 范圍內(nèi),y 的變化情況如下表所示,請(qǐng)寫(xiě)出一個(gè)符合表格中數(shù)據(jù)的y 關(guān)于x 的函數(shù)解析式,依此函數(shù)解析式,判斷上午9:05 到9:20 能否完成加氣950 立方米的任務(wù),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、C、E在同一條直線上,△ABC與△CDE都是等邊三角形,則下列結(jié)論不一定成立的是(
A.△ACE≌△BCD
B.△BGC≌△AFC
C.△ADB≌△CEA
D.△DCG≌△ECF

查看答案和解析>>

同步練習(xí)冊(cè)答案