【題目】如圖,圓弧形橋拱的跨度AB=16米,拱高CD=4米,那么圓弧形橋拱所在圓的半徑是米.

【答案】10
【解析】解:設圓弧形橋拱所在圓心為O,連接BO,DO, 可得:AD=BD,OD⊥AB,
∵AB=16米,拱高CD=4米,
∴BD=AD=8m,
設BO=xm,則DO=(x﹣4)m,
根據(jù)題意可得:BD2+DO2=BO2 ,
即82+(x﹣4)2=x2 ,
解得:x=10,
即圓弧形橋拱所在圓的半徑是10m.
所以答案是:10.

【考點精析】根據(jù)題目的已知條件,利用垂徑定理的推論的相關知識可以得到問題的答案,需要掌握推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條;推論2 :圓的兩條平行弦所夾的弧相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示,按下列步驟操作: 將正方形在正六邊形中繞點B順時針旋轉,使KM邊與BC邊重合,完成第一次旋轉;再繞點C順時針旋轉,使MN邊與CD邊重合,完成第二次旋轉;…在這樣連續(xù)6次旋轉的過程中,點B,M間的距離可能是(

A.1.4
B.1.1
C.0.8
D.0.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=2x+bb0)與坐標軸交于A,B兩點,與雙曲線x0)交于D點,過點DDCx軸,垂足為G,連接OD.已知AOB≌△ACD

1)如果b=﹣2,求k的值;

2)試探究kb的數(shù)量關系,并寫出直線OD的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家電銷售商場電冰箱的銷售價為每臺2100元,空調的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調的進價多400元,商場用80000元購進電冰箱的數(shù)量與用64000元購進空調的數(shù)量相等.
(1)求每臺電冰箱與空調的進價分別是多少?
(2)現(xiàn)在商場準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進空調數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13200元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸、y軸分別交于點A(3,0)、B(0,3)兩點.

(1)試求拋物線的解析式和直線AB的解析式;
(2)動點E從O點沿OA方向以1個單位/秒的速度向終點A勻速運動,同時動點F沿AB方向以 個單位/秒的速度向終點B勻速運動,E、F任意一點到達終點時另一個點停止運動,連接EF,設運動時間為t,當t為何值時△AEF為直角三角形?
(3)拋物線位于第一象限的圖象上是否存在一點P,使△PAB面積最大?如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分)如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=4米,CD=3米,ADC=90°,AB=13米,BC=12米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系xOy中,點A在x軸的正半軸上,點B、C在第一象限,且四邊形OABC是平行四邊形,OC=2 ,sin∠AOC= ,反比例函數(shù)y= 的圖象經過點C以及邊AB的中點D.
(1)求這個反比例函數(shù)的解析式;
(2)四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,我們把橫、縱坐標都為整數(shù)的點稱為整點,記定點都是整點的三角形為整點三角形.如圖,已知整點O(0,0),A(2,4),請在所給網格區(qū)域(含邊界)上按要求畫圖.

(1)在圖1中畫一個整點三角形OAB,其中點B在第一象限,且點B的橫、縱坐標之和等于點A的橫坐標;

(2)在圖2中畫一個整點三角形OAC,其中點C的坐標為(3t,t),且點C的橫、縱坐標之和是點A的縱坐標的2倍.請直接寫出△OAC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是⊙O上一點,⊙O的半徑為 ,D、E分別是弦AC、BC上一動點,且OD=OE= ,則AB的最大值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案