【題目】如圖,將△ABC沿直線AB向右平移后到達△BDE的位置.
(1)若AC=6cm,則BE= cm;
(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,則∠AOF等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,有兩個完全相同的直角三角形紙片,如果把其中一個三角形紙片先橫向平移格,再縱向平移格,就能使它的一條邊與另一個三角形紙片的一條邊重合,拼接成一個四邊形,那么的結(jié)果( )
A.只有一個確定的值B.有兩個不同的值
C.有三個不同的值D.有三個以上不同的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在數(shù)軸上表示的數(shù)是﹣6,點B表示的數(shù)是+10,P,Q兩點同時分別以1個單位/秒和2個單位/秒的速度從A,B兩點出發(fā),沿數(shù)軸做勻速運動,設(shè)運動時間為t(秒).
(1)線段AB的長度為 個單位;
(2)如果點P向右運動,點Q向左運動,求:
①當t為何值時,P與點Q相遇?
②當t為何值時,PQ=AB?
(3)如果點P,點Q同時向左運動,是否存在這樣的時間t使得P,Q兩點到A點距離相等?若存在,求出t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有一,且,,,已知是由繞某點順時針旋轉(zhuǎn)得到的.
(1)請寫出旋轉(zhuǎn)中心的坐標是 ,旋轉(zhuǎn)角是 度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫出順時針旋轉(zhuǎn)90°、180°的三角形;
(3)設(shè)兩直角邊、、斜邊,利用變換前后所形成的圖案驗證勾股定理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將1,2,3,...,30,這30個整數(shù),任意分為15組,每組2個數(shù).現(xiàn)將每組數(shù)中的一個數(shù)記為,另一個數(shù)記為,計算代數(shù)式的值,15組數(shù)代入后可得到15個值,則這15個值之和的最小值為( )
A.B.120C.225D.240
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華同學經(jīng)過調(diào)查,了解到某客車租賃公司有,兩種型號的客車,并得到了下表中的信息.
車型 | 型 | 型 |
座位 | 45座 | 60座 |
信息 | 每輛型客車一天的租金比型客車少100元 | |
5輛型客車和2輛型客車一天的租金為1600元 |
(1)求每輛型和型客車每天的租金各是多少元?
(2)小華所在學校準備組織七年級全體學生外出一天進行研學活動,小華同學設(shè)計了下面甲乙兩種租車方案:
方案甲:只租用型客車,但有一輛客車會空出30個座位.
方案乙:只租用型客車,剛好坐滿,且比方案甲少用兩輛客車.
求小華所在學校七年級學生的總?cè)藬?shù).
(3)如果從節(jié)省費用的角度考慮,是否還有其他租車方案?如果有,請直接寫出一種租車方案;如果沒有,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)2x2﹣4x+1=0(配方法)
(2)﹣3x=1﹣x2
(3)2(x+2)2=x(x+2)
(4)(x+1)(x﹣1)+2(x+3)=8.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:AD為△ABC的中線,過B、C兩點分別作AD所在直線的垂線段BE和CF,E、F為垂足,過點E作EG∥AB交BC于點H,連結(jié)HF并延長交AB于點P。
(1)求證:DE=DF
(2)若;①求:的值;②求證:四邊形HGAP為平行四邊形。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com