【題目】已知,正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長(zhǎng)線)于點(diǎn)M、N,AH⊥MN于點(diǎn)H.
(1)如圖①,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí),請(qǐng)你直接寫出AH與AB的數(shù)量關(guān)系: ;
(2)如圖②,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí),(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請(qǐng)寫出理由,如果成立請(qǐng)證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點(diǎn)H,且MH=2,NH=3,求AH的長(zhǎng).(可利用(2)得到的結(jié)論)
【答案】(1)AH=AB;(2)數(shù)量關(guān)系成立,證明見試題解析;(3)6.
【解析】試題分析:(1)由三角形全等可以證明AH=AB;
(2)延長(zhǎng)CB至E,使BE=DN,證明△AEM≌△ANM,能得到AH=AB;
(3)分別沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,然后分別延長(zhǎng)BM和DN交于點(diǎn)C,得正方形ABCE,設(shè)AH=x,則MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,解得x.
試題解析:(1)如圖①AH=AB.
(2)數(shù)量關(guān)系成立.如圖②,延長(zhǎng)CB至E,使BE=DN.
∵ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,在Rt△AEB和Rt△AND中,,∴Rt△AEB≌Rt△AND,∴AE=AN,∠EAB=∠NAD,∴∠EAM=∠NAM=45°,在△AEM和△ANM中,,∴△AEM≌△ANM.∵AB、AH是△AEM和△ANM對(duì)應(yīng)邊上的高,∴AB=AH.
(3)如圖③分別沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,∴BM=2,DN=3,∠B=∠D=∠BAD=90°.分別延長(zhǎng)BM和DN交于點(diǎn)C,得正方形ABCD,由(2)可知,AH=AB=BC=CD=AD.設(shè)AH=x,則MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2,∴,
解得,(不符合題意,舍去).∴AH=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果水位升高3m時(shí)水位變化記作+3m,那么水位下降3m時(shí)水位變化記作 ( )
A. -3m B. 3 m C. 6 m D. -6 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象在第四象限的交點(diǎn)為點(diǎn)B.
(1)求直線AB的解析式;
(2)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的頂點(diǎn)坐標(biāo)為(1,4),且其圖象經(jīng)過(guò)點(diǎn)(-2,-5),求此二次函數(shù)的解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件中,是必然事件的是( )
A. 380人中有兩個(gè)人的生日在同一天 B. 兩條線段可以組成一個(gè)三角形
C. 打開電視機(jī),它正在播放新聞聯(lián)播 D. 三角形的內(nèi)角和等于360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+mx-2=0的兩個(gè)根為x1、x2,若x1+x2-x1x2=6,則m=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=-分別與x軸、y軸交于點(diǎn)M、N,點(diǎn)A、B分別在y軸、x軸上,且∠B=60°,AB=2,將△ABO繞原點(diǎn)O順時(shí)針轉(zhuǎn)動(dòng)一周,當(dāng)AB與直線MN平行時(shí)點(diǎn)A的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com