【題目】下列方程中①;②;③;④,是一元二次方程的有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
【答案】A
【解析】
根據(jù)一元二次方程的定義解答即可.
一元二次方程必須滿足四個(gè)條件:
(1)未知數(shù)的最高次數(shù)是2;(2)二次項(xiàng)系數(shù)不為0;(3)是整式方程;(4)含有一個(gè)未知數(shù).
由這四個(gè)條件對(duì)四個(gè)選項(xiàng)進(jìn)行驗(yàn)證,滿足這四個(gè)條件者為正確答案.
①方程2x﹣3=0中的未知數(shù)x的最高次數(shù)是1,它屬于一元一次方程.
②方程x2﹣2y=0中含有兩個(gè)未知數(shù)x、y,未知數(shù)的最高次數(shù)是2,它屬于二元二次方程.
③方程x2+=﹣3是分式方程,不是整式方程.
④方程x2=0中只含有一個(gè)未知數(shù)x,且x的最高次數(shù)是2,它屬于一元二次方程.
綜上所述:屬于一元二次方程的是④,共有1個(gè).
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)了“等邊三角形”后,激發(fā)了他的學(xué)習(xí)和探究的興趣,就想考考他的朋友小崔,小明作了一個(gè)等邊,如圖1,并在邊上任意取了一點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合),過(guò)點(diǎn)作交于點(diǎn),延長(zhǎng)到,使得,連接交于點(diǎn).
(1)若,求的長(zhǎng)度;
(2)如圖2,延長(zhǎng)到,再延長(zhǎng)到,使得,連接,,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為BC中點(diǎn),CE⊥AD于E,BF∥AC交CE的延長(zhǎng)線于F.
(1)求證:△ACD≌△CBF;
(2)求證:AB垂直平分DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt中,∠C=90°,AC=BC,在線段CB延長(zhǎng)線上取一點(diǎn)P,以AP為直角邊,點(diǎn)P為直角頂點(diǎn),在射線CB上方作等腰 Rt, 過(guò)點(diǎn)D作DE⊥CB,垂足為點(diǎn)E.
(1) 依題意補(bǔ)全圖形;
(2) 求證: AC=PE;
(3) 連接DB,并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)F,用等式表示線段CF與AC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是邊BC上的動(dòng)點(diǎn),連接AD,點(diǎn)C關(guān)于直線AD的對(duì)稱(chēng)點(diǎn)為點(diǎn)E,射線BE與射線AD交于點(diǎn)F.
(1)在圖1中,依題意補(bǔ)全圖形;
(2)記(),求的大;(用含的式子表示)
(3)若△ACE是等邊三角形,猜想EF和BC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC右側(cè)作射線CP,∠ACP=(0°<<60°),點(diǎn)A關(guān)于射線CP的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,BD交CP于點(diǎn)E,連接AD,AE.
(1)求∠DBC的大小(用含的代數(shù)式表示);
(2)在(0°<<60°)的變化過(guò)程中,∠AEB的大小是否發(fā)生變化?如果發(fā)生變化,請(qǐng)直接寫(xiě)出變化的范圍;如果不發(fā)生變化,請(qǐng)直接寫(xiě)出∠AEB的大。
(3)用等式表示線段AE,BD,CE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠擬建一座平面圖形為矩形且面積為平方米的三級(jí)污水處理池(平面圖如圖所示).由于地形限制,三級(jí)污水處理池的長(zhǎng)、寬都不能超過(guò)米.如果池的外圍墻建造單價(jià)為每米元,中間兩條隔墻建造單價(jià)為每米元,池底建造單價(jià)為每平方米元.(池墻的厚度忽略不計(jì))
當(dāng)三級(jí)污水處理池的總造價(jià)為元時(shí),求池長(zhǎng);
如果規(guī)定總造價(jià)越低就越合算,那么根據(jù)題目提供的信息,以元為總造價(jià)來(lái)修建三級(jí)污水處理池是否最合算?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,以線段為邊作,使得,連接,再以為邊作,使得,.
()如圖1,連結(jié),求證:.
()如圖2,時(shí),將線段沿著射線的方向平移,得到線段,連接,.
①若,依題意補(bǔ)全圖2,求線段的長(zhǎng).
②請(qǐng)直接寫(xiě)出線段的長(zhǎng)(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCD中,∠C=∠D=90°,AD<BC,BC=CD=6,E是邊CD上的一點(diǎn),恰好使AE=5,并且∠ABE=45°,則CE的長(zhǎng)是___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com