【題目】中,,,以為一邊,在外部作等腰直角三角形,則線段的長(zhǎng)為_______.
【答案】8或或
【解析】
存在三種情況,一種是AD=AC,∠DAC=90°,第二種是AC=CD,∠ACD=90°,第三種是AD=DC,∠ADC=90°.第一種直接可得出BD長(zhǎng),后兩種構(gòu)造直角三角形,利用勾股定理可求得BD的長(zhǎng).
情況一:AD=AC,∠DAC=90°,圖形如下
∵AB=AC=4,AC=AD
∴BD=4+4=8
情況二:AC=CD,∠ACD=90°,圖形如下,過(guò)點(diǎn)D作AB的垂線,交AB反向延長(zhǎng)線于點(diǎn)E,連接BD
∵AB=AC=4,AC=CD,
∴CD=4
∵∠DCA=90°,∠CAB=90°,∠DEA=90°
∴CD∥AE,DE∥CA,
∴四邊形ACDE是平行四邊形
∴DE=CA=4,EA=DC=4
在Rt△DEB中,DE=4,EB=8,
∴BD=
情況三:AD=DC,∠ADC=90°,圖形如下,過(guò)點(diǎn)D作AB的垂線,交AB反向延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)D作AC的垂線,交AC于點(diǎn)F
∵AB=AC=4,△ACD是等腰直角三角形,DF⊥AC
∴DF=FA=FC=2
同理,四邊形DFAE是平行四邊形
∴DE=FA=2,AE=DF=2
在Rt△DEB中,DE=2,EB=6,
∴BD=
故答案為:8或或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn)及點(diǎn)(,),且圖象與x軸的另一交點(diǎn)到原點(diǎn)的距離為1,則該二次函數(shù)解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,正方形中,點(diǎn)E在上,點(diǎn)F在上,連接、、.且平分.
(1)如圖1,求證:.
(2)如圖2,若點(diǎn)E為BC的中點(diǎn),,求的面積.
(3)如圖3,若∠B=90°,連接BD分別交AF、AE于M、N兩點(diǎn),連接ME,若ME⊥AF于M, BM:EF=4:5,△AEF的面積為15時(shí),求AE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(m-1)x2-2x+1=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)為何值時(shí),方程有一根為零?
(2)為何值時(shí),方程的兩個(gè)根互為相反數(shù)?
(3)是否存在,使方程的兩個(gè)根互為倒數(shù)?若存在,請(qǐng)求出的值;不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請(qǐng)回答:
(1)每千克茶葉應(yīng)降價(jià)多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的 幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解決中小學(xué)大班額問(wèn)題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬(wàn)元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬(wàn)元.
(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬(wàn)元?
(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過(guò)11800萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬(wàn)元和500萬(wàn)元.請(qǐng)問(wèn)共有哪幾種改擴(kuò)建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,∠ABC=∠ACB,點(diǎn)D在直線BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),點(diǎn)E在射線AC上運(yùn)動(dòng),且∠ADE=∠AED,設(shè)∠DAC=n.
(1)如圖①,當(dāng)點(diǎn)D在邊BC上時(shí),且n等于30°,則∠BAD= ,∠CDE= ;
(2)如圖②,當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)B左側(cè)時(shí),其他條件不變,請(qǐng)猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)C的右側(cè)時(shí),其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)?jiān)趫D③中畫出圖形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn)在上,,點(diǎn)是的中點(diǎn),若點(diǎn)以1厘米/秒的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng);點(diǎn)同時(shí)以2厘米/秒的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)到停止運(yùn)動(dòng),點(diǎn)也同時(shí)停止運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí)間是_____秒時(shí),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com