【題目】如圖,邊長為的正的邊在直線上,兩條距離為的平行直線和垂直于直線,和同時向右移動(的起始位置在點),速度均為每秒個單位,運動時間為(秒),直到到達點停止,在和向右移動的過程中,記夾在和間的部分的面積為,則關(guān)于的函數(shù)圖象大致為( 。
A.B.
C.D.
【答案】B
【解析】
依據(jù)a和b同時向右移動,分三種情況討論,求得函數(shù)解析式,進而得到當(dāng)0≤t<1時,函數(shù)圖象為開口向上的拋物線的一部分,當(dāng)1≤t<2時,函數(shù)圖象為開口向下的拋物線的一部分,當(dāng)2≤t≤3時,函數(shù)圖象為開口向上的拋物線的一部分.
如圖①,當(dāng)0≤t<1時,BE=t,DE=t,
∴s=S△BDE=×t×t=t2;
如圖②,當(dāng)1≤t<2時,CE=2t,BG=t1,
∴DE=(2t),FG=(t1),
∴s=S五邊形AFGED=S△ABCS△BGFS△CDE
=×2××(t1)×(t1)×(2t)×(2t)
=t2+3t;
如圖③,當(dāng)2≤t≤3時,CG=3t,GF=(3t),
∴s=S△CFG=×(3t)×(3t)=t23t+,
綜上所述,當(dāng)0≤t<1時,函數(shù)圖象為開口向上的拋物線的一部分;當(dāng)1≤t<2時,函數(shù)圖象為開口向下的拋物線的一部分;當(dāng)2≤t≤3時,函數(shù)圖象為開口向上的拋物線的一部分,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結(jié)AE.
(1)如圖1,當(dāng)點D與M重合時,求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點D不與M重合時,(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.
①求∠CAM的度數(shù);
②當(dāng)FH=,DM=4時,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線(k<0)經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標(biāo)為(﹣6,4),則△AOC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“創(chuàng)科集團”會議室內(nèi)的一個長為6米、寬為4米的矩形ABCD墻面需要進行裝飾,設(shè)計圖案如圖所示,將矩形ABCD墻面分割成3個區(qū)域,中間“十”字形區(qū)域甲的寬度均為1米,四個角為四個全等的直角三角形,△AEF,△BGH,△CMN,△DPQ為區(qū)域乙,剩下部分為區(qū)域丙,其中AE=BG=CN=DP,設(shè)EG=HM=NP=FQ=x(米)(1≤x≤3)
(1)當(dāng)x=2時,求區(qū)域乙的面積;
(2)求區(qū)域丙的面積的最大值;
(3)為了圖案富有美感,設(shè)置區(qū)域乙與區(qū)域丙的面積之比為1:4,在區(qū)域甲、區(qū)域乙、區(qū)域丙分別嵌貼甲、乙、丙三種不同的裝飾板,這三種裝飾板每平方米的單價分別為a(百元),b(百元),c(百元)(a,b,c均為整數(shù),且6<a<10),若a+b+c=20,整個墻面嵌貼共花費了150(百元),求三種裝飾板每平方米的單價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新冠狀病毒戰(zhàn)斗中,有152箱公共衛(wèi)生防護用品要運到、兩城鎮(zhèn),若用大小貨車共15輛,則恰好能一次性運完這批防護用品,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其中用大貨車運往、兩城鎮(zhèn)的運費分別為每輛800元和900元,用小貨車運往、兩城鎮(zhèn)的運費分別為每輛400元和600元.
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往城鎮(zhèn),其余貨車前往城鎮(zhèn),設(shè)前往城鎮(zhèn)的大貨車為輛,前往、兩城鎮(zhèn)總費用為元,試求出與的函數(shù)解析式.若運往城鎮(zhèn)的防護用品不能少于100箱,請你寫出符合要求的最少費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關(guān)閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點B、C、D始終在一條直線上,已知托臂AC=20厘米,托臂BD=40厘米,支點C,D之間的距離是10厘米,張角∠CAB=60°.
(1)求支點D到滑軌MN的距離(精確到1厘米);
(2)將滑塊A向左側(cè)移動到A′,(在移動過程中,托臂長度不變,即AC=A′C′,BC=BC′)當(dāng)張角∠C′A'B=45°時,求滑塊A向左側(cè)移動的距離(精確到1厘米).(備用數(shù)據(jù):≈1.41,≈1.73,≈2.45,≈2.65)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸交于點A,與y軸交于點C,矩形ACBE的頂點B在第一象限的反比例函數(shù)圖像上,過點B作,垂足為F,設(shè)OF=t.
(1)求∠ACO的正切值;
(2)求點B的坐標(biāo)(用含t的式子表示);
(3)已知直線與反比例函數(shù)圖像都經(jīng)過第一象限的點D,聯(lián)結(jié)DE,如果軸,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點.
(1)如圖1,求⊙O的半徑;
(2)如圖1,若點E是BC的中點,連接PE,求PE的長度;
(3)如圖2,若點M是BC邊上任意一點(不含B、C),以點M為直角頂點,在BC的上方作∠AMN=90°,交直線CP于點N,求證:AM=MN.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com