【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c0;②b2a;③方程ax2+bx+c0的兩根分別為-31;④a2b+c≥0,其中正確的命題是( 。

A.①②③B.①④C.①③D.①③④

【答案】C

【解析】

根據(jù)二次函數(shù)的圖象可知拋物線開口向上,對(duì)稱軸為x=-1,且過(guò)點(diǎn)(1,0),根據(jù)對(duì)稱軸可得拋物線與x軸的另一個(gè)交點(diǎn)為(-3,0),把(1,0)代入可對(duì)①做出判斷;由對(duì)稱軸為x=-1,可對(duì)②做出判斷;根據(jù)二次函數(shù)與一元二次方程的關(guān)系,可對(duì)③做出判斷;根據(jù)a、c的符號(hào),以及對(duì)稱軸可對(duì)④做出判斷;最后綜合得出答案.

解:由圖象可知:拋物線開口向上,對(duì)稱軸為直線x=-1,過(guò)(1,0)點(diǎn),
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;

對(duì)稱軸為直線x=-1,即:整理得,b=2a,因此②不正確;

由拋物線的對(duì)稱性,可知拋物線與x軸的兩個(gè)交點(diǎn)為(1,0)(-3,0),因此方程ax2+bx+c=0的兩根分別為-31;故③是正確的;
a0b0,c0,且b=2a,則a-2b+c=a-4a+c=-3a+c0,因此④不正確;
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來(lái)解;求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解:求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過(guò)因式分解把它轉(zhuǎn)化為,解方程,可得方程的解.利用上述材料給你的啟示,解下列方程;

1;

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一人站在兩等高的路燈之間走動(dòng),為人在路燈照射下的影子,為人在路燈照射下的影子.當(dāng)人從點(diǎn)走向點(diǎn)時(shí)兩段影子之和的變化趨勢(shì)是(

A.先變長(zhǎng)后變短B.先變短后變長(zhǎng)

C.不變D.先變短后變長(zhǎng)再變短

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1.在平面直角坐標(biāo)系中,拋物線軸相交于兩點(diǎn),頂點(diǎn)為,設(shè)點(diǎn)軸的正半軸上一點(diǎn),將拋物線繞點(diǎn)旋轉(zhuǎn),得到新的拋物線

求拋物線的函數(shù)表達(dá)式:

若拋物線與拋物線軸的右側(cè)有兩個(gè)不同的公共點(diǎn),求的取值范圍.

如圖2,是第一象限內(nèi)拋物線上一點(diǎn),它到兩坐標(biāo)軸的距離相等,點(diǎn)在拋物線上的對(duì)應(yīng)點(diǎn),設(shè)上的動(dòng)點(diǎn),上的動(dòng)點(diǎn),試探究四邊形能否成為正方形?若能,求出的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店銷售一種進(jìn)價(jià)為每本10元的筆記本,為獲得高利潤(rùn),以不低于進(jìn)價(jià)進(jìn)行銷售,結(jié)果發(fā)現(xiàn),每月銷售量y與銷售單價(jià)x之間的關(guān)系可以近似地看作一次函數(shù):

1)該文具店這種筆記本每月獲得利潤(rùn)為w元,求每月獲得的利潤(rùn)w元與銷售單價(jià)x之間的函數(shù)關(guān)系式;

2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DCBD,連接ACEAC上一點(diǎn),直線EDAB延長(zhǎng)線交于點(diǎn)F,若∠CDE=∠DACAC12

1)求⊙O半徑;

2)求證:DE為⊙O的切線;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有長(zhǎng)為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度 a 10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬 AB xm,面積為 Sm2

1 S x 的函數(shù)關(guān)系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長(zhǎng)是多少米?

3 當(dāng) AB 的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年某市為創(chuàng)評(píng)全國(guó)文明城市稱號(hào),周末團(tuán)市委組織志愿者進(jìn)行宣傳活動(dòng).班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過(guò)抽簽的方式確定2名女生去參加.

抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機(jī)抽取一張卡片,記下姓名,再?gòu)氖S嗟?/span>3張卡片中隨機(jī)抽取第二張,記下姓名.

(1)該班男生小剛被抽中 事件,小悅被抽中 事件(不可能必然隨機(jī)”);第一次抽取卡片小悅被抽中的概率為

(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐:

操作與發(fā)現(xiàn):

如圖,已知AB兩點(diǎn)在直線CD的同一側(cè),線段AE,BF均是直線CD的垂線段,且BFAE的右邊,AE2BF,將BF沿直線CD向右平移,在平移過(guò)程中,始終保持∠ABP90°不變,BP邊與直線CD相交于點(diǎn)P,點(diǎn)GAE的中點(diǎn),連接BG

探索與證明:求證:

1)四邊形EFBG是矩形;

2ABG∽△PBF

查看答案和解析>>

同步練習(xí)冊(cè)答案