【題目】如圖,已知⊙O的直徑CD垂直于弦AB,垂足為點E,∠ACD=22.5°,若CD=6cm,則AB的長為( 。

A. 4cm B. 3cm C. 2cm D. 2cm

【答案】B

【解析】試題分析:連結(jié)OA,根據(jù)圓周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直徑CD垂直于弦AB,根據(jù)垂徑定理得AE=BE,且可判斷△OAE為等腰直角三角形,所以AE=OA=,然后利用AB=2AE進行計算.

解:連結(jié)OA,如圖,

∵∠ACD=22.5°,

∴∠AOD=2∠ACD=45°

∵⊙O的直徑CD垂直于弦AB,

∴AE=BE,△OAE為等腰直角三角形,

∴AE=OA,

∵CD=6,

∴OA=3,

∴AE=

∴AB=2AE=3cm).

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:善于思考的小明在解方程組時,采用了一種整體代換的解法,解法如下:

解:將方程②8x+20y+2y=10,變形為24x+10y+2y=10③,把方程①代入③得,2×6+2y=10,則y=-1;把y=-1代入①得,x=4,所以方程組的解為:.

請你解決以下問題:

1)試用小明的整體代換的方法解方程組

2)已知x、y、z,滿足試求z的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD,延長邊AB到點E,使BEAB,連接DEBDEC,設(shè)DEBC于點O,∠BOD2A,求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有三個點A、B、C,完成系列問題:

(1)將點B向右移動六個單位長度到點D,在數(shù)軸上表示出點D.

(2)在數(shù)軸上找到點E,使點EA、C兩點的距離相等.并在數(shù)軸上標出點E表示的數(shù).

(3)在數(shù)軸上有一點F,滿足點F到點A與點F到點C的距離和是9,則點F表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,我國煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時起,井內(nèi)空氣中CO的濃度達到4 mg/L,此后濃度呈直線型增加,在第7小時達到最高值46 mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降,如圖,根據(jù)題中相關(guān)信息回答下列問題:

(1)求爆炸前后空氣中CO濃度y與時間x的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量取值范圍;

(2)當空氣中的CO濃度達到34 mg/L時,井下3 km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?

(3)礦工只有在空氣中的CO濃度降到4 mg/L及以下時,才能回到礦井開展生產(chǎn)自救,求礦工至少在爆炸后多少小時才能下井?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩人要去某風景區(qū)游玩,每天某一時段開往該風景區(qū)有三輛汽車(票價相同),但是他們不知道這些車的舒適程度,也不知道汽車開過來的順序,兩人采用了不同的乘車方案:

甲無論如何總是上開來的第一輛車;而乙則是先觀察后上車,當?shù)谝惠v車開來時,他不上車,而是仔細觀察車的舒適狀況,如果第二輛車的舒適程度比第一輛好,他就上第二輛車;如果第二輛不比第一輛好,他就上第三輛車.如果把這三輛車的舒適程度分為上、中、下三等,請解決下面的問題:

(1)三輛車按出現(xiàn)的先后順序共有_____種不同的可能.

(2)你認為甲、乙兩人所采用的方案中,不巧坐到下等車的可能性大小比較為:_____(填甲大”、“乙大”、“相同).理由是:_____.(要求通過計算概率比較)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;

(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC是數(shù)軸上三點,點C表示的數(shù)為6BC4,AB12

(1)寫出數(shù)軸上點AB表示的數(shù).

(2)動點P,Q分別從A,C同時出發(fā),點P以每秒6個單位長度的速度沿數(shù)軸向右勻速運動,點Q以每秒3個單位長度的速度沿數(shù)軸向左勻速運動.若MAP的中點,點N在線段CQ上,且CNCQ,設(shè)運動時間為ts(t0)

①寫出數(shù)軸上點MN表示的數(shù)(用含t的式子表示)

t為何值時,原點O恰為線段PQ的中點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB分別切⊙OAB,BC⊙O的直徑.

(1)求證:AC∥OP

(2)∠APB60°,BC10cm,求AC的長.

查看答案和解析>>

同步練習冊答案