【題目】如圖,∠ACB=90°,AC=BC,BECE,ADCE.

(1)求證:△ACD≌△CBE.

(2)若AD=6.8,DE=4.5,求BE的長度

【答案】1)見解析;(22.3.

【解析】

1)求出∠E=∠ADC=∠ACB90°,∠CAD=∠BCE,根據(jù)AAS推出即可;

2)根據(jù)全等三角形的性質(zhì)求出CEAD6.8,BECD,即可得出答案.

1)證明:∵∠ACB90°,BECE,ADCE

∴∠E=∠ADC=∠ACB90°,

∴∠BCE+∠ACD90°,∠ACD+∠CAD90°,

∴∠CAD=∠BCE,

在△ADC和△CEB

∴△ADC≌△CEBAAS);

2)解:∵△ADC≌△CEB,AD6.8,

CEAD6.8,BECD,

DE4.5

BECDCEDE6.84.52.3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點O是等邊三角形ABC內(nèi)一點,AOB=110°,BOC=α, OC為邊作等邊三角形OCD,連接AD.

1當(dāng)α=150°時,試判斷AOD的形狀,并說明理由;

2探究:當(dāng)a為多少度時,AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=16cm,BC=6cm,點P從點A出發(fā)沿AB向點B移動(不與點A、B重合),一直到達(dá)點B為止;同時,點Q從點C出發(fā)沿CD向點D移動(不與點C、D重合).運動時間設(shè)為t秒.

1)若點P、Q均以3cm/s的速度移動,則:AP=  cm;QC=  cm.(用含t的代數(shù)式表示)

2)若點P3cm/s的速度移動,點Q2cm/s的速度移動,經(jīng)過多長時間PD=PQ,使△DPQ為等腰三角形?

3)若點P、Q均以3cm/s的速度移動,經(jīng)過多長時間,四邊形BPDQ為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市長途客運站每天6:30—7:30開往某縣的三輛班車票價相同,但車的舒適程度不同.小張和小王因事需在這一時段乘車去該縣,但不知道三輛車開來的順序,兩人采用不同的乘車方案:小張無論如何決定乘坐開來的第一輛車,而小王則是先觀察后上車,當(dāng)?shù)谝惠v車開來時,他不上車,而是仔細(xì)觀察車的舒適狀況.若第二輛車的狀況比第一輛車好,他就上第二輛車;若第二輛車不如第一輛車,他就上第三輛車.若按這三輛車的舒適程度分為優(yōu)、中、差三等,請你思考并回答下列問題:

(1)三輛車按出現(xiàn)的先后順序共有哪幾種可能?

(2)請列表分析哪種方案乘坐優(yōu)等車的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O是線段AD的中點,分別以AODO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接ACBD,相交于點E,連接BC

1)證明:⊿ABC ≌ ⊿DCB;

2)求∠AEB的大。

3)如圖2,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞點O旋轉(zhuǎn)(△OAB△OCD不能重疊),求∠AEB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,將繞點按順時針旋轉(zhuǎn)得到,連接,它們交于點,

求證:

當(dāng),求的度數(shù).

當(dāng)四邊形是菱形時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,邊上的中線,過點于點,過點平行線,交的延長線于點,在延長線上截得,連結(jié)、.若,,則四邊形的面積等于________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABDEACDF,AC=DF下列條件中不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點在邊上,,點是邊上一個動點,若周長的最小值是6,則的長是(

A.B.C.D.1

查看答案和解析>>

同步練習(xí)冊答案