【題目】在矩形中,為的平分線.
(1)如圖①,若矩形是正方形,,求的長;
(2)如圖②,若,,求的長;
(3)如圖②,若,,求的長.
【答案】(1);(2);(3).
【解析】
(1)利用角平分線的性質(zhì)證得,由Rt△ABERt△FBE,推出AB=BF,再求得對角線的BD長,設(shè),在中,利用勾股定理構(gòu)建方程即可求解;
(2)同理證得,AB=BF,求得對角線的BD長,設(shè),在中,利用勾股定理構(gòu)建方程即可求解;
(3)同理,設(shè),在中,利用勾股定理構(gòu)建方程即可求解.
(1)過點作,垂足為.
∵,即,為的平分線,
∴,
∵BE公共,
∴Rt△ABERt△FBE,
∴AB=BF=1,
∵四邊形是正方形,
∴AB=AD=1,,
∴,,
∴,
∵,
∴EF=FD,
設(shè),則,,
∴在中,,
即,
解得:(負(fù)值已舍),
即;
(2)如圖,過點作,垂足為.
同理可得:,AB=BF=1,
,
∴,
設(shè),則,,
∴在中,,
即,
解得:,
即;
(3)如圖,過點作,垂足為.
同理可得:,,
,
∴,
設(shè),則,,
∴在中,,
即,
解得:,
即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對正整數(shù)n的“F”運算:①當(dāng)n為奇數(shù)時,F(n)=3n+1;②當(dāng)n為偶數(shù)時,F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復(fù)進行,例如,取n=24,則:若n=13,則第2020次“F”運算的結(jié)果是( 。
A.1B.4C.2020D.42020
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“安全教育”是學(xué)校必須開展的一項重要工作.某校為了了解家長和學(xué)生參與“暑期安全知識學(xué)習(xí)”的情況,進行了網(wǎng)上測試,并在本校學(xué)生中隨機抽取部分學(xué)生進行調(diào)查.若把參與測試的情況分為類情形:.僅學(xué)生自己參與;.家長和學(xué)生一起參與;.僅家長自己參與;.家長和學(xué)生都未參與.根據(jù)調(diào)查情況,繪制了以下不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
在這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中類所對應(yīng)扇形的圓心角的度數(shù);
根據(jù)抽樣調(diào)查結(jié)果,估計該校名學(xué)生中“家長和學(xué)生都未參與”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B的坐標(biāo)分別為,點C為坐標(biāo)平面內(nèi)一點,,點M為線段的中點,連接,則的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明將兩個直角三角形紙片如圖(1)那樣拼放在同一平面上,抽象出如圖(2)的平面圖形,與恰好為對頂角,,連接,,點F是線段上一點.
探究發(fā)現(xiàn):
(1)當(dāng)點F為線段的中點時,連接(如圖(2),小明經(jīng)過探究,得到結(jié)論:.你認(rèn)為此結(jié)論是否成立?_________.(填“是”或“否”)
拓展延伸:
(2)將(1)中的條件與結(jié)論互換,即:若,則點F為線段的中點.請判斷此結(jié)論是否成立.若成立,請寫出證明過程;若不成立,請說明理由.
問題解決:
(3)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個填寫運算符號的游戲:在“”中的每個內(nèi),填入,,,中的某一個(可重復(fù)使用),然后計算結(jié)果.
(1)計算:;
(2)若,請推算內(nèi)的符號;
(3)在“”的內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為做好疫情宣傳巡查工作,各地積極借助科技手段加大防控力度.如圖,亮亮在外出期間被無人機隔空喊話“戴上口罩,趕緊回家”.據(jù)測量,無人機與亮亮的水平距離是15米,當(dāng)他抬頭仰視無人機時,仰角恰好為,若亮亮身高1.70米,則無人機距離地面的高度約為________米.(結(jié)果精確到0.1米,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
如圖,已知,,用尺規(guī)作圖的方法在上取一點,使得.
作法:
(1)作線段的垂直平分線.
(2)直線交于點.
則點就是所求的點.
證明:連接
直線垂直平分線段
(填寫正確的依據(jù))
.
解決下列問題:
(1)利用尺規(guī)作圖確定 點的位置;
(2)補全證明過程中的依據(jù);
(3)如果題干無條件,在線段上點不一定存在,在請畫圖說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABC為等邊三角形,以AB邊為腰作等腰RtABD,∠BAD=90,AC與BD交于點E,連接CD,過點D作DF⊥BC交BC延長線于點F.
(1)如圖1,若DF=1,AB= ;AE= ;
(2)如圖2,將CDF繞點D順時針旋轉(zhuǎn)至△C1DF1的位置,點C,F的對應(yīng)點分別為C1,F1,當(dāng)DC1平分∠EDC時,DC1與AC交于點M,在AM上取點N,使AN=DM,連接DN,求tan∠NDM的值.
(3)如圖3,將CDF繞點D順時針旋轉(zhuǎn)至C1DF1的位置,點C,F的對應(yīng)點分別為C1,F1,連接AF1、BC1,點G是BC1的中點,連接AG.求的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com