【題目】如圖,已知在△ABC中,AB=AC,D為BC上一點(diǎn),BE=CD,CF=BD,那么∠EDF等于( 。
A.90°﹣∠AB.90°﹣∠AC.45°﹣∠AD.180°﹣∠A
【答案】B
【解析】
根據(jù)等邊對等角可得∠B=∠C,利用“邊角邊”證明△BDE和△CFD全等,根據(jù)全等三角形對應(yīng)角相等可得∠BED=∠CDF,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠CDE=∠B+∠BED,然后求出∠EDF=∠B,再根據(jù)等腰三角形兩底角相等求解即可.
∵AB=AC,
∴∠B=∠C,
在△BDE和△CFD中,
,
∴△BDE≌△CFD(SAS),
∴∠BED=∠CDF,
由三角形的外角性質(zhì)得,∠CDE=∠B+∠BED,
∵∠CDE=∠CDF+∠EDF,
∴∠EDF=∠B,
在△ABC中,∠B=(180°﹣∠A)=90°﹣∠A.
∴∠EDF=90°﹣∠A.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為元/件,售價(jià)為元/件,每星期可賣出件,經(jīng)調(diào)查發(fā)現(xiàn):售價(jià)每漲元(售價(jià)不能高于元/件),每星期少賣件.設(shè)每件漲價(jià)元(為自然數(shù)),每星期的銷量為件.
(1)關(guān)于的函數(shù)解析式為________;
如何定價(jià)才能使每星期的利潤(元)最大且每星期的銷量較大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,
(1)求作⊙O,圓心O是AD的中垂線與AB的交點(diǎn),OD為半徑.(尺規(guī)作圖,不寫作法,保留痕跡)
(2)求證:BC是⊙O切線.
(3)若BD=5,DC=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)C為AB中點(diǎn),CD=BE,CD∥BE.
(1)求證:△ACD≌△CBE;
(2)若∠D=35°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程①和②問是否存在這樣的n值,使方程①的兩個(gè)實(shí)數(shù)根的差的平方等于方程②的一整數(shù)根?若存在,求出這樣的n值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】( 1)計(jì)算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生體質(zhì)情況,從各年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,每個(gè)學(xué)生的測試成績按標(biāo)準(zhǔn)對應(yīng)為優(yōu)秀、良好、及格、不及格四個(gè)等級(jí),統(tǒng)計(jì)員在將測試數(shù)據(jù)繪制成圖表時(shí)發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計(jì)4人,良好漏統(tǒng)計(jì)6人,于是及時(shí)更正,從而形成如圖圖表,請按正確數(shù)據(jù)解答下列各題:
學(xué)生體能測試成績各等次人數(shù)統(tǒng)計(jì)表
體能等級(jí) | 調(diào)整前人數(shù) | 調(diào)整后人數(shù) |
優(yōu)秀 | 8 |
|
良好 | 16 |
|
及格 | 12 |
|
不及格 | 4 |
|
合計(jì) | 40 |
|
(1)填寫統(tǒng)計(jì)表;
(2)根據(jù)調(diào)整后數(shù)據(jù),補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1500人,請你估算出該校體能測試等級(jí)為“優(yōu)秀”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程+px+q=0的兩個(gè)根是,,那么+=-p, =q,反過來,如果+=-p, =q,那么以,為兩根的一元二次方程是+px+q=0.請根據(jù)以上結(jié)論,解決下列問題:
(1)已知關(guān)于x的方程+mx+n=0(n≠0),求出—個(gè)一元二次方程,使它的兩根分別是已知方程兩根的倒數(shù).
(2)已知a、b滿足-15a-5=0,-15b-5=0,求的值.
(3)已知a、b、c均為實(shí)數(shù),且a+b+c=0,abc=16,求正數(shù)c的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(x-1)2-1.
(1)該拋物線的對稱軸是______________,頂點(diǎn)坐標(biāo)為____________;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)描點(diǎn)畫出該拋物線;
x | … | … | |||||
y | … | … |
(3)根據(jù)圖象,直接寫出當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com